GATE SOLVED PAPER - ME

THERMODYNAMICS

YEAR 2013
ONE MARK
Q. 1 A cylinder contains $5 \mathrm{~m}^{3}$ of an ideal gas at a pressure of 1 bar. This gas is compressed in a reversible isothermal process till its pressure increases to 5 bar. The work in kJ required for this process is
(A) 804.7
(B) 953.2
(C) 981.7
(D) 1012.2

YEAR 2013
TWO MARKS
Specific enthalpy and velocity of steam at inlet and exit of a steam turbine, running under steady state, are as given below:

	Specific Enthalpy ${ }^{\wedge} \mathrm{kJ} / \mathrm{kgh}$	Velocity ${ }^{\wedge} \mathrm{m} / \mathrm{sh}$
Inlet steam condition	3250	180
Exit steam condition	2360	5

The rate of heat loss from the turbine per kg of steam flow rate is 5 kW . Neglecting changes in potential energy of steam, the power developed in kW by the steam turbine per kg of steam flow rate is
(A) 901.2
(B) 911.2
(C) 17072.5
(D) 17082.5

The pressure, temperature and velocity of air flowing in a pipe are 5 bar, 500 K and $50 \mathrm{~m} / \mathrm{s}$, respectively. The specific heats of air at constant pressure and at constant volume are $1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $0.718 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, respectively. Neglect potential energy. If the pressure and temperature of the surrounding are 1 bar and 300 K , respectively, the available energy in $\mathrm{kJ} / \mathrm{kg}$ of the air stream is
(A) 170
(B) 187
(C) 191
(D) 213

Common Data For Q. 4 and 5

In a simple Brayton cycle, the pressure ratio is 8 and temperatures at the entrance of compressor and turbine are 300 K and 1400 K , respectively. Both compressor and gas turbine have isentropic efficiencies equal to 0.8 . For the gas, assume a constant value of c_{p} (specific heat at constant pressure) equal to $1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and ratio of specific heats as 1.4. Neglect changes in kinetic and potential energies.

The power required by the compressor in $\mathrm{kW} / \mathrm{kg}$ of gas flow rate is
(A) 194.7
(B) 243.4
(C) 304.3
(D) 378.5
Q. 5 The thermal efficiency of the cycle in percentage (\%) is
(A) 24.8
(B) 38.6
(C) 44.8
(D) 53.1

Common Data For Q. 8 and 9

Air enters an adiabatic nozzle at $300 \mathrm{kPa}, 500 \mathrm{~K}$ with a velocity of $10 \mathrm{~m} / \mathrm{s}$. It leaves the nozzle at 100 kPa with a velocity of $180 \mathrm{~m} / \mathrm{s}$. The inlet area is $80 \mathrm{~cm}^{2}$. The specific heat of air c_{p} is $1008 \mathrm{~J} / \mathrm{kgK}$.
Q. 8 The exit temperature of the air is
(A) 516 K
(B) 532 K
(C) 484 K
(D) 468 K
Q. 9 The exit area of the nozzle in cm^{2} is
(A) 90.1
(B) 56.3
(C) 4.4
(D) 12.9

YEAR 2011

Heat and work are
(A) intensive properties
(B) extensive properties
(B) point functions
(D) path functions

Common Data For Q. 15 and 16

In an experimental set up, air flows between two stations P and Q adiabatically. The direction of flow depends on the pressure and temperature conditions maintained at P and Q. The conditions at station P are 150 kPa and 350 K . The temperature at station Q is 300 K .
The following are the properties and relations pertaining to air :
Specific heat at constant pressure,
$c_{p}=1.005 \mathrm{~kJ} / \mathrm{kgK}$;
Specific heat at constant volume,
$c_{v}=0.718 \mathrm{~kJ} / \mathrm{kgK}$;
Characteristic gas constant,
$R=0.287 \mathrm{~kJ} / \mathrm{kgK}$
Enthalpy,
$h=c_{p} T$
Internal energy,
Q. 15 If the air has to flow from station P to station Q , the maximum possible value of pressure in kPa at station Q is close to
(A) 50
(B) 87
(C) 128
(D) 150
Q. 16 If the pressure at station Q is 50 kPa , the change in entropy $\left(s_{Q}-s_{P}\right)$ in $\mathrm{kJ} / \mathrm{kgK}$ is
(A) -0.155
(B) 0
(C) 0.160
(D) 0.355

Common Data For Q. 17 and 18

The temperature and pressure of air in a large reservoir are 400 K and 3 bar respectively. A converging diverging nozzle of exit area $0.005 \mathrm{~m}^{2}$ is fitted to the wall of the reservoir as shown in the figure. The static pressure of air at the exit section for isentropic flow through the nozzle is 50 kPa . The characteristic gas constant and the ratio of specific heats of air are $0.287 \mathrm{~kJ} / \mathrm{kgK}$ and 1.4 respectively.

Q. 17 The density of air in $\mathrm{kg} / \mathrm{m}^{3}$ at the nozzle exit is
(A) 0.560
(B) 0.600
(C) 0.727
(D) 0.800
Q. 18
Q. 20

The mass flow rate of air through the nozzle in kg / s is
(A) 1.30
(B) 1.77
(C) 1.85
(D) 2.06

YEAR 2010
A turbo-charged four-stroke direct injection diesel engine has a displacement volume of $0.0259 \mathrm{~m}^{3}$ (25.9 litres). The engine has an output of 950 kW at 2200 rpm . The mean effective pressure (in MPa) is closest to
(A) 2
(B) 1
(C) 0.2
(D) 0.1

One kilogram of water at room temperature is brought into contact with a high temperature thermal reservoir. The entropy change of the universe is
(A) equal to entropy change of the reservoir
(B) equal to entropy change of water
(C) equal to zero
(D) always positive

A mono-atomic ideal gas $(g=1.67$, molecular weight $=40)$ is compressed adiabatically from $0.1 \mathrm{MPa}, 300 \mathrm{~K}$ to 0.2 MPa . The universal gas constant is $8.314 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The work of compression of the gas (in $\mathrm{kJ} \mathrm{kg}^{-1}$) is
(A) 29.7
(B) 19.9
(C) 13.3
(D) 0
Q. 22 Consider the following two processes ;
(a) A heat source at 1200 K loses 2500 kJ of heat to a sink at 800 K
(b) A heat source at 800 K loses 2000 kJ of heat to a sink at 500 K

Which of the following statements is true ?
(A) Process I is more irreversible than Process II
(B) Process II is more irreversible than Process I
(C) Irreversibility associated in both the processes are equal
(D) Both the processes are reversible

Common Data For Q. 23 and 24

In a steam power plant operating on the Rankine cycle, steam enters the turbine at $4 \mathrm{MPa}, 350 \mathrm{cC}$ and exists at a pressure of 15 kPa . Then it enters the condenser and exits as saturated water. Next, a pump feeds back the water to the boiler. The adiabatic efficiency of the turbine is 90%. The thermodynamic states of water and steam are given in table.

State	$h\left(\mathrm{kJkg}^{-1}\right)$		$s\left(\mathrm{kJkg}^{-1} \mathrm{~K}^{-1}\right)$		$\mathrm{n}\left(\mathrm{m}^{3} \mathrm{~kg}^{-1}\right)$	
Steam : $4 \mathrm{MPa}, 350 \mathrm{cC}$	3092.5		6.5821		0.06645	
Water: 15 kPa	h_{f}	h_{g}	s_{f}	s_{g}	n_{f}	n_{8}
	225.94	2599.1	0.7549	8.0085	0.001014	10.02

h is specific enthalpy, s is specific entropy and n the specific volume; subscripts f and g denote saturated liquid state and saturated vapor state.
Q. 23 The net work output $\left(\mathrm{kJkg}^{-1}\right)$ of the cycle is
(A) 498
(B) 775
(C) 860
(D) 957
a. 24 Heat supplied $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$ to the cycle is
(A) 2372
(B) 2576
(C) 2863
(D) 3092
Q. 25 If a closed system is undergoing an irreversible process, the entropy of the system
(A) must increase
(B) always remains constant
(C) Must decrease
(D) can increase, decrease or remain constant
Q. 26 A frictionless piston-cylinder device contains a gas initially at 0.8 MPa and $0.015 \mathrm{~m}^{3}$. It expands quasi-statically at constant temperature to a final volume of $0.030 \mathrm{~m}^{3}$. The work output (in kJ) during this process will be (A) 8.32
(B) 12.00
(C) 554.67
(D) 8320.00

YEAR 2009
TWO MARKS

A compressor undergoes a reversible, steady flow process. The gas at inlet and outlet of the compressor is designated as state 1 and state 2 respectively. Potential and kinetic energy changes are to be ignored. The following notations are used : $n=$ Specific volume and $p=$ pressure of the gas .
The specific work required to be supplied to the compressor for this gas compression process is
(A) $\#^{2} p d n$
(B) $\#^{2} \mathrm{n} d p$
(C) $\mathrm{n}_{1}\left(p_{2}-p_{1}\right)$
(D) $-p_{2}\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)$

In an air-standard Otto-cycle, the compression ratio is 10 . The condition at the beginning of the compression process is 100 kPa and 27c C. Heat added at constant volume is $1500 \mathrm{~kJ} / \mathrm{kg}$, while $700 \mathrm{~kJ} / \mathrm{kg}$ of heat is rejected during the other constant volume process in the cycle. Specific gas constant for air $=0.287 \mathrm{~kJ} / \mathrm{kgK}$. The mean effective pressure (in kPa) of the cycle is
(A) 103
(B) 310
(C) 515
(D) 1032

An irreversible heat engine extracts heat from a high temperature source at a rate of 100 kW and rejects heat to a sink at a rate of 50 kW . The entire work output of the heat engine is used to drive a reversible heat pump operating between a set of independent isothermal heat reservoirs at 17 cC and 75 cC . The rate (in kW) at which the heat pump delivers heat to its high temperature sink is
(A) 50
(B) 250
(C) 300
(D) 360

Common Data For Q. 30 and 31

The inlet and the outlet conditions of steam for an adiabatic steam turbine are as indicated in the figure. The notations are as usually followed.

$$
\begin{aligned}
& h_{1}=3200 \mathrm{~kJ} / \mathrm{kg} \\
& V_{1}=160 \mathrm{~m} / \mathrm{s} \\
& Z_{1}=10 \mathrm{~m} \\
& p_{1}=3 \mathrm{MPa}
\end{aligned}
$$

Q. 30 If mass rate of steam through the turbine is $20 \mathrm{~kg} / \mathrm{s}$, the power output of the turbine (in MW) is
(A) 12.157
(B) 12.941
(C) 168.001
(D) 168.785
Q. 33 Which one of the following is NOT a necessary assumption for the air-standard Otto cycle ?
(A) All processes are both internally as well as externally reversible.
(B) Intake and exhaust processes are constant volume heat rejection processes.
(C) The combustion process is a constant volume heat addition process.
(D) The working fluid is an ideal gas with constant specific heats.

YEAR 2008
Q. 34 A gas expands in a frictionless piston-cylinder arrangement. The expansion process is very slow, and is resisted by an ambient pressure of 100 kPa . During the expansion process, the pressure of the system (gas) remains constant at 300 kPa . The change in volume of the gas is $0.01 \mathrm{~m}^{3}$. The maximum amount of work that could be utilized from the above processis
(A) 0 kJ
(B) 1 kJ
(C) 2 kJ
(D) 3 kJ

A cyclic device operates between three reservoirs, as shown in the figure. Heat is transferred to/ from the cycle device. It is assumed that heat transfer between each thermal reservoir and the cyclic device takes place across negligible temperature difference. Interactions between the cyclic device and the respective thermal reservoirs that are shown in the figure are all in the form of heat transfer.

The cyclic device can be
(A) a reversible heat engine
(B) a reversible heat pump or a reversible refrigerator
(C) an irreversible heat engine
(D) an irreversible heat pump or an irreversible refrigerator

A balloon containing an ideal gas is initially kept in an evacuated and insulated room. The balloon ruptures and the gas fills up the entire room. Which one of the following statements is TRUE at the end of above process?
(A) The internal energy of the gas decreases from its initial value, but the enthalpy remains constant
(B) The internal energy of the gas increases from its initial value, but the enthalpy remains constant
(C) Both internal energy and enthalpy of the gas remain constant
(D) Both internal energy and enthalpy of the gas increase

A rigid, insulated tank is initially evacuated. The tank is connected with a supply line through which air (assumed to be ideal gas with constant specific heats) passes at $1 \mathrm{MPa}, 350 \mathrm{C} \mathrm{C}$. A valve connected with the supply line is opened and the tank is charged with air until the final pressure inside the tank reaches 1 MPa . The final temperature inside the tank.

(A) is greater than 350c C
(B) is less than 350c C
(C) is equal to 350 c C
(D) may be greater than, less than, or equal to, 350c C depending on the volume of the tank
Q. 38 A thermal power plant operates on a regenerative cycle with a single open feed water heater, as shown in the figure. For the state points shown, the specific enthalpies are: $h_{1}=2800 \mathrm{~kJ} / \mathrm{kg}$ and $h_{2}=200 \mathrm{~kJ} / \mathrm{kg}$. The bleed to the feed water heater is 20% of the boiler steam generation rate. The specific enthalpy at state 3 is

(A) $720 \mathrm{~kJ} / \mathrm{kg}$
(B) $2280 \mathrm{~kJ} / \mathrm{kg}$
(C) $1500 \mathrm{~kJ} / \mathrm{kg}$
(D) $3000 \mathrm{~kJ} / \mathrm{kg}$

In a steady state flow process taking place in a device with a single inlet and a outlet single outlet, the work done per unit mass flow rate is given by $W=-\# n d p$, where n is the specific volume and p is the pressure.
The expression for W given above
(A) is valid only if the process is both reversible and adiabatic
(B) is valid only if the process is both reversible and isothermal
(C) is valid for any reversible process
outlet
(D) is incorrect; it must be $W=\# p d n$

Common Data For Q. 40 to 42

In the figure shown, the system is a pure substance kept in a piston-cylinder arrangement. The system is initially a two-phase mixture containing 1 kg of liquid and 0.03 kg of vapour at a pressure of 100 kPa . Initially, the piston rests on a set of stops, as shown in the figure. A pressure of 200 kPa is required to exactly balance the weight of the piston and the outside atmospheric pressure. Heat transfer takes place into the system until its volume increases by 50%. Heat transfer to the system occurs in such a manner that the piston, when allowed to move, does so in a very slow (quasi-static/ quasi-equilibrium) process. The thermal reservoir from which heat is transferred to the system has a temperature of 400 c C. Average temperature of the system boundary can be taken as 175 C C
. The heat transfer to the system is 1 kJ , during which its entropy increases by $10 \mathrm{~J} / \mathrm{K}$.

Specific volume of liquid $\left(n_{f}\right)$ and vapour $\left(n_{g}\right)$ phases, as well as values of saturation temperatures, are given in the table below.

Pressure (kPa)	Saturation temperature, $T_{\text {sat }}(\mathrm{cC})$	$n_{f}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	$n_{g}\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$
100	100	0.001	0.1
200	200	0.0015	0.002

At the end of the process, which one of the following situations will be true ?
(A) superheated vapour will be left in the system
(B) no vapour will be left in the system
(C) a liquid + vapour mixture will be left in the system
(D) the mixture will exist at a dry saturated vapour state

The work done by the system during the process is
(A) 0.1 kJ
(B) 0.2 kJ
(C) 0.3 kJ
(D) 0.4 kJ

The net entropy generation (considering the system and the thermal reservoir together) during the process is closest to
(A) $7.5 \mathrm{~J} / \mathrm{K}$
(B) $7.7 \mathrm{~J} / \mathrm{K}$
(C) $8.5 \mathrm{~J} / \mathrm{K}$
(D) $10 \mathrm{~J} / \mathrm{K}$

YEAR 2007
Which of the following relationships is valid only for reversible processes undergone by a closed system of simple compressible substance (neglect changes in kinetic and potential energy?)
(A) $d Q=d U+d W$
(B) $T d s=d U+p d n$
(C) $T d s=d U+d W$
(D) $d Q=d U+p d n$
Q. 44
Q. 46 Which combination of the following statements is correct? P : A gas cools upon expansion only when its Joule-Thomson coefficient is positive in the temperature range of expansion.
Q : For a system undergoing a process, its entropy remains constant only when the process is reversible.

R : The work done by closed system in an adiabatic is a point function.
S : A liquid expands upon freezing when the slope of its fusion curve on pressureTemperature diagram is negative.
(A) R and S
(B) P and Q
(C) Q, R and S
(D) P, Q and R
Q. 47 Which combination of the following statements is correct ?

The incorporation of reheater in a steam power plant :
P : always increases the thermal efficiency of the plant.
Q: always increases the dryness fraction of steam at condenser inlet
R : always increases the mean temperature of heat addition.
S : always increases the specific work output.
(A) P and S
(B) Q and S
(C) P, R and S
(D) P, Q, R and S

Common Data For Q. 48 and 49

A thermodynamic cycle with an ideal gas as working fluid is shown below.

The above cycle is represented on $T-s$ plane by
(A)

(B)

(C)

(D)

If the specific heats of the working fluid are constant and the value of specific heat ratio is 1.4 , the thermal efficiency (\%) of the cycle is
(A) 21
(B) 40.9
(C) 42.6
(D) 59.7

A heat transformer is device that transfers a part of the heat, supplied to it at an intermediate temperature, to a high temperature reservoir while rejecting the remaining part to a low temperature heat sink. In such a heat transformer, 100 kJ of heat is supplied at 350 K . The maximum amount of heat in kJ that can be transferred to 400 K , when the rest is rejected to a heat sink at 300 K is
(A) 12.50
(B) 14.29
(C) 33.33
(D) 57.14

Given below is an extract from steam tables.

Temperature in CC	par (Bar)	Specific volume $\mathbf{m}^{\mathbf{3} / \mathbf{k g}}$		Enthalpy (kJ/ kg)	
		Saturated Vapour	Saturated Liquid	Saturated Vapour	
45	0.09593	0.001010	15.26	188.45	2394.8
342.24	150	0.001658	0.010337	1610.5	2610.5

Specific enthalpy of water in $\mathrm{kJ} / \mathrm{kg}$ at 150 bar and 45 cC is
(A) 203.60
(B) 200.53
(C) 196.38
(D) 188.45

Determine the correctness or otherwise Assertion (A) and the Reason (R) Assertion (A) : In a power plant working on a Rankine cycle, the regenerative feed water heating improves the efficiency of the steam turbine.
Reason (R): The regenerative feed water heating raises the average temperature of heat addition in the Rankine cycle.
(A) Both (A) and (R) are true and (R) is the correct reason for (A)
(B) Both (A) and (R) are true but (R) is NOT the correct reason for (A)
(C) Both (A) and (R) are false
(D) (A) is false but (R) is true

Determine the correctness or otherwise of the following Assertion (A) and the Reason (R).
Assertion (A) : Condenser is an essential equipment in a steam power plant.
Reason (R): For the same mass flow rate and the same pressure rise, a water pump requires substantially less power than a steam compressor.
(A) Both (A) and (R) are true and (R) is the correct reason for (A)
(B) Both (A) and (R) are true and (R) is NOT the correct reason for (A)
(C) Both (A) and (R) are false
(D) (A) is false but (R) is true

Match items from groups I, II, III, IV and V.

Group I	Group II	Group III	Group IV	Group V
	When added to the system is	Differential	Function	Phenomenon
E Heat	G Positive	I Exact	K Path	M Transient
F Work	H Negative	J Inexact	L Point	N Boundary

(A)	F-G-J-K-M	(B)	E-G-I-K-M
	E-G-I-K-N		F-H-I-K-N
(C)	F-H-J-L-N	(D)	E-G-J-K-N
	E-H-I-L-M		F-H-J-K-M

Group I shows different heat addition process in power cycles. Likewise, Group II shows different heat removal processes. Group III lists power cycles. Match items from Groups I, II and III.

Group I	Group II	Group III
P. Pressure constant	S. Pressure constant	1. Rankine Cycle
Q. Volume Constant	T. Volume Constant	2. Otto cycle
R. Temperature constant	U. Temperature Constant	3. Carnot cycle
		4. Diesel cycle 5. Brayton cycle

(A) P-S-5
(B) P-S-1
R-U-3
R-U-3
P-S-1
P-S-4
Q-T-2
P-T-2
(C) R-T-3
(D) $\quad \mathrm{P}-\mathrm{T}-4$
P-S-1
R-S-3
P-T-4
P-S-1
Q-S-5
P-S-5

Common Data For Q. 56 and 57

A football was inflated to a gauge pressure of 1 bar when the ambient temperature was 15 c C. When the game started next day, the air temperature at the stadium was 5c C. Assume that the volume of the football remains constant at $2500 \mathrm{~cm}^{3}$.
Q. 56 The amount of heat lost by the air in the football and the gauge pressure of air in the football at the stadium respectively equal
(A) $30.6 \mathrm{~J}, 1.94 \mathrm{bar}$
(B) $21.8 \mathrm{~J}, 0.93 \mathrm{bar}$
(C) $61.1 \mathrm{~J}, 1.94 \mathrm{bar}$
(D) $43.7 \mathrm{~J}, 0.93 \mathrm{bar}$
Q. 57 Gauge pressure of air to which the ball must have been originally inflated so that it would be equal 1 bar gauge at the stadium is
(A) 2.23 bar
(B) 1.94 bar
(C) 1.07 bar
(D) 1.00 bar

YEAR 2005
ONE MARK
The following four figures have been drawn to represent a fictitious thermodynamic cycle, on the $p-n_{v}$ and $T-s$ planes.

fig. 3

fig. 4

According to the first law of thermodynamics, equal areas are enclosed by
(A) figures 1 and 2
(B) figures 1 and 3
(C) figures 1 and 4
(D) figures 2 and 3

A $p-v$ diagram has been obtained from a test on a reciprocating compressor. Which of the following represents that diagram?
(A)

(B)

(C)

(D)

A reversible thermodynamic cycle containing only three processes and producing work is to be constructed. The constraints are
(i) there must be one isothermal process,
(ii) there must be one isentropic process,
(iii) the maximum and minimum cycle pressures and the clearance volume are fixed, and
(iv) polytropic processes are not allowed. Then the number of possible cycles are
(A) 1
(B) 2
(C) 3
(D) 4
 a $\quad n^{2 k}$
The final pressure.
(A) will be slightly less than 5 bar
(B) will be slightly more than 5 bar
(C) will be exactly 5 bar
(D) cannot be ascertained in the absence of the value of a
Q. 62 In the velocity diagram shown below, $u=$ blade velocity,$C=$ absolute fluid velocity and W = relative velocity of fluid and the subscripts 1 and 2 refer to inlet and outlet. This diagram is for

(A) an impulse turbine
(B) a reaction turbine
(C) a centrifugal compressor
(D) an axial flow compressor

Common Data For Q. 63 and 64

In two air standard cycles-one operating in the Otto and the other on the Brayton cycle-air is isentropically compressed from 300 to 450 K . Heat is added to raise the temperature to 600 K in the Otto cycle and to 550 K in the Brayton cycle.
Q. 63 In h_{O} and h_{B} are the efficiencies of the Otto and Brayton cycles, then
(A) $h_{O}=0.25, h_{B}=0.18$
(B) $h_{O}=h_{B}=0.33$
(C) $h_{O}=0.5, h_{B}=0.45$
(D) it is not possible to calculate the efficiencies unless the temperature after the expansion is given
Q. 64 If W_{O} and W_{B} are work outputs per unit mass, then
(A) $W_{O}>W_{B}$
(B) $W_{O}<W_{B}$
(C) $W_{O}=W_{B}$
(D) it is not possible to calculate the work outputs unless the temperature after the expansion is given

Common Data For Q. 65 and 66

The following table of properties was printed out for saturated liquid and saturated vapour of ammonia. The title for only the first two columns are available. All that we know that the other columns (column 3 to 8) contain data on specific properties, namely, internal energy ($\mathrm{kJ} / \mathrm{kg}$), enthalpy $(\mathrm{kJ} / \mathrm{kg})$ and entropy ($\mathrm{kJ} /$ kg.K)

$t(\mathrm{cC})$	$\mathrm{p}(\mathrm{kPa})$						
-20	190.2	88.76	0.3657	89.05	5.6155	1299.5	1418.0
0	429.6	179.69	0.7114	180.36	5.3309	1318.0	1442.2
20	587.5	272.89	1.0408	274.30	5.0860	1332.2	1460.2
40	1554.9	368.74	1.3574	371.43	4.8662	1341.0	1470.2

The specific enthalpy data are in columns
(A) 3 and 7
(B) 3 and 8
(C) 5 and 7
(D) 5 and 8

When saturated liquid at 40 cC is throttled to -20 cC , the quality at exit will be
(A) 0.189
(B) 0.212
(C) 0.231
(D) 0.788

YEAR 2004
ONE MARK
A gas contained in a cylinder is compressed, the work required for compression being 5000 kJ . During the process, heat interaction of 2000 kJ causes the surroundings to be heated. The changes in internal energy of the gas during the process is
(A) -7000 kJ
(B) -3000 kJ
(C) +3000 kJ
(D) +7000 kJ

The compression ratio of a gas power plant cycle corresponding to maximum work output for the given temperature limits of $T_{\min }$ and $T_{\max }$ will be
(A) $\mathrm{b} \frac{T_{\max }}{T_{\min }} \tau^{2^{(g-1)}}$
(B) $\mathrm{b} \frac{T_{\min }}{T_{\max }} \mathrm{f}^{(g-1)}$
(C) $\mathrm{b} \frac{T_{\max }}{T_{\text {min }}} \mathrm{a}^{\frac{g-1}{g}}$
(D) $\mathrm{b} \frac{T_{\min }}{T_{\max }} \frac{g-1}{-}$

At the time of starting, idling and low speed operation, the carburretor supplies a mixture which can be termed as
(A) Lean
(B) slightly leaner than stoichiometric
(C) stoichiometric
(D) rich

A steel billet of 2000 kg mass is to be cooled from 1250 K to 450 K . The heat released during this process is to be used as a source of energy. The ambient temperature is 303 K and specific heat of steel is $0.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The available energy of this billet is
(A) 490.44 MJ
(B) 30.95 MJ
(C) 10.35 MJ
(D) 0.10 MJ

During a Morse test on a 4 cylinder engine, the following measurements of brake power were taken at constant speed.
All cylinders firing
Number 1 cylinder not firing
Number 2 cylinder not firing
Number 3 cylinder not firing
Number 4 cylinder not firing The mechanical efficiency of the engine is
(A) 91.53%
(B) 85.07%
(C) 81.07%
(D) 61.22%

A solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$ transforms it to the internal energy of a fluid at an overall efficiency of 50%. The fluid heated to 250 K is used to run a heat engine which rejects heat at 315 K . If the heat engine is to deliver 2.5 kW power, the minimum area of the solar collector required would be
(A) $83.33 \mathrm{~m}^{2}$
(B) $16.66 \mathrm{~m}^{2}$
(C) $39.68 \mathrm{~m}^{2}$
(D) $79.36 \mathrm{~m}^{2}$
Q. 73 An engine working on air standard Otto cycle has a cylinder diameter of 10 cm and stroke length of 15 cm . The ratio of specific heats for air is 1.4. If the clearance volume is 196.3 cc and the heat supplied per kg of air per cycle is $1800 \mathrm{~kJ} / \mathrm{kg}$, the work output per cycle per kg of air is
(A) 879.1 kJ
(B) 890.2 kJ
(C) 895.3 kJ
(D) 973.5 kJ

Common Data For Q. 74 and 75

Consider a steam power plant using a reheat cycle as shown. Steam leaves
the boiler and enters the turbine at $4 \mathrm{MPa}, 350 \mathrm{CC}\left(h_{3}=3095 \mathrm{~kJ} / \mathrm{kg}\right)$. After expansion in the turbine to $400 \mathrm{kPa}\left(h_{4}=2609 \mathrm{~kJ} / \mathrm{kg}\right)$, and then expanded in a low pressure turbine to $10 \mathrm{kPa}\left(h_{6}=2165 \mathrm{~kJ} / \mathrm{kg}\right)$. The specific volume of liquid handled by the pump can be assumed to be

Q. 74 The thermal efficiency of the plant neglecting pump work is
(A) 15.8%
(B) 41.1%
(C) 48.5%
(D) 58.6%
Q. 77 A diesel engine is usually more efficient than a spark ignition engine because
(A) diesel being a heavier hydrocarbon, releases more heat per kg than gasoline
(B) the air standard efficiency of diesel cycle is higher than the Otto cycle, at a fixed compression ratio
(C) the compression ratio of a diesel engine is higher than that of an SIengine
(D) self ignition temperature of diesel is higher than that of gasoline
Q. 78 In Ranking cycle, regeneration results in higher efficiency because
(A) pressure inside the boiler increases
(B) heat is added before steam enters the low pressure turbine
(C) average temperature of heat addition in the boiler increases
(D) total work delivered by the turbine increases
Q. 79 Considering the variation of static pressure and absolute velocity in an impulse steam turbine, across one row of moving blades
(A) both pressure and velocity decreases
(B) pressure decreases but velocity increases
(C) pressure remains constant, while velocity increases
(D) pressure remains constant, while velocity decreases
Q. 80 A $2 \mathrm{~kW}, 40$ liters water heater is switched on for 20 minutes. The heat capacity c_{p} for water is $4.2 \mathrm{~kJ} / \mathrm{kgK}$. Assuming all the electrical energy has gone into heating the water, increase of the water temperature in degree centigrade is
(A) 2.7
(B) 4.0
(C) 14.3
(D) 25.25
Q. 81 Considering the relationship $T d s=d U+p d n$ between the entropy (s), internal energy (U), pressure (p), temperature (T) and volume (n), which of the following statements is correct?
(A) It is applicable only for a reversible process
(B) For an irreversible process, $T d s>d U+p d n$
(C) It is valid only for an ideal gas
(D) It is equivalent to I ${ }^{\text {st }}$ law, for a reversible process
Q. 82

In a gas turbine, hot combustion products with the specific heats $c_{p}=0.98 \mathrm{~kJ} / \mathrm{kgK}$, and $c_{v}=0.7538 \mathrm{~kJ} / \mathrm{kgK}$ enters the turbine at $20 \mathrm{bar}, 1500 \mathrm{~K}$ exit at 1 bar . The isentropic efficiency of the turbine is 0.94 . The work developed by the turbine per kg of gas flow is
(A) $689.64 \mathrm{~kJ} / \mathrm{kg}$
(B) $794.66 \mathrm{~kJ} / \mathrm{kg}$
(C) $1009.72 \mathrm{~kJ} / \mathrm{kg}$
(D) $1312.00 \mathrm{~kJ} / \mathrm{kg}$

An automobile engine operates at a fuel air ratio of 0.05 , volumetric efficiency of 90% and indicated thermal efficiency of 30%. Given that the calorific value of the fuel is $45 \mathrm{MJ} / \mathrm{kg}$ and the density of air at intake is $1 \mathrm{~kg} / \mathrm{m}^{3}$, the indicated mean effective pressure for the engine is
(A) 6.075 bar
(B) 6.75 bar
(C) 67.5 bar
(D) 243 bar

For an engine operating on air standard Otto cycle, the clearance volume is 10% of the swept volume. The specific heat ratio of air is 1.4. The air standard cycle efficiency is
(A) 38.3%
(B) 39.8%
(C) 60.2%
(D) 61.7%

Common Data For Q. 85 and 86

Nitrogen gas (molecular weight 28) is enclosed in a cylinder by a piston, at the initial condition of $2 \mathrm{bar}, 298 \mathrm{~K}$ and $1 \mathrm{~m}^{3}$. In a particular process, the gas slowly expands under isothermal condition, until the volume becomes $2 \mathrm{~m}^{3}$. Heat exchange occurs with the atmosphere at 298 K during this process.
Q. 85 The work interaction for the Nitrogen gas is
(A) 200 kJ
(B) 138.6 kJ
(C) 2 kJ
(D) -200 kJ

The entropy changes for the Universe during the process in kJ / K is
(A) 0.4652
(B) 0.0067
(C) 0
(D) -0.6711
Q. 87 A positive value of Joule-Thomson coefficient of a fluid means
(A) temperature drops during throttling
(B) temperature remains constant during throttling
(C) temperature rises during throttling
(D) None of the above
Q. 88 A correctly designed convergent-divergent nozzle working at a designed load is
(A) always isentropic
(B) always choked
(C) never choked
(D) never isentropic

YEAR 2002
A Carnot cycle is having an efficiency of 0.75. If the temperature of the high temperature reservoir is 727 C C , what is the temperature of low temperature reservoir ?
(A) 23c C
(B) $-23 c \mathrm{C}$
(C) 0 c C
(D) 250 cC

An ideal air standard Otto cycle has a compression ratio of 8.5. If the ratio of the specific heats of air (g) is 1.4 , what is the thermal efficiency in percentage) of the Otto cycle ?
(A) 57.5
(B) 45.7
(C) 52.5
(D) 95

The efficiency of superheat Rankine cycle is higher than that of simple Rankine cycle because
(A) the enthalpy of main steam is higher for superheat cycle
(B) the mean temperature of heat addition is higher for superheat cycle
(C) the temperature of steam in the condenser is high
(D) the quality of steam in the condenser is low.

YEAR 2001
Q. 92 The Rateau turbine belongs to the category of
(A) pressure compounded turbine
(B) reaction turbine
(C) velocity compounded turbine
(D) radial flow turbine
Q. 93 A gas having a negative Joule-Thomson coefficient $(m<0)$, when throttled, will
(A) become cooler
(B) become warmer
(C) remain at the same temperature
(D) either be cooler or warmer depending on the type of gas
Q. 94 A cyclic heat engine does 50 kJ of work per cycle. If the efficiency of the heat engine is 75%, the heat rejected per cycle is
(A) $16 \frac{2}{3} \mathrm{~kJ}$
(B) $33 \frac{1}{3} \mathrm{~kJ}$
(C) $37 \frac{1}{2} \mathrm{~kJ}$
(D) $66 \frac{2}{3} \mathrm{~kJ}$

A single-acting two-stage compressor with complete intercooling delivers air at 16 bar. Assuming an intake state of 1 bar at 15 CC , the pressure ratio per stage is
(A) 16
(B) 8
(C) 4
(D) 2

A small steam whistle (perfectly insulated and doing no shaft work) causes a drop of $0.8 \mathrm{~kJ} / \mathrm{kg}$ in the enthalpy of steam from entry to exit. If the kinetic energy of the steam at entry is negligible, the velocity of the steam at exit is
(A) $4 \mathrm{~m} / \mathrm{s}$
(B) $40 \mathrm{~m} / \mathrm{s}$
(C) $80 \mathrm{~m} / \mathrm{s}$
(D) $120 \mathrm{~m} / \mathrm{s}$

In a spark ignition engine working on the ideal Otto cycle, the compression ratio is 5.5. The work output per cycle (i.e., area of the $p-n$ diagram) is equal to $23.625 \# 10^{5} \# n_{c}$, where n_{c} is the clearance volume in m^{3}. The indicated mean effective pressure is
(A) 4.295 bar
(B) 5.250 bar
(C) 86.870 bar
(D) 106.300 bar

SOLUTION

Sol. 1 Option (A) is correct.
For Reversible isothermal Process work done is given by

$$
\begin{aligned}
W_{1-2} & =p_{1} v_{1} \ln \frac{p_{1}}{p_{2}} \\
& =1 \# 10^{5} \# 5 \# \ln \mathrm{~b}_{5} \frac{1}{5} \mathrm{I} \\
& =-804.7 \mathrm{~kJ}
\end{aligned}
$$

The negative sign shows that the compression process is taking place in this process.

Option (A) is correct.
From energy balance equation for steady flow system

$$
\begin{aligned}
E_{\text {in }} & =E_{\text {out }} \\
h_{1}+\frac{V_{1}^{2}}{2}+g z_{1}+d Q & =h_{2}+\frac{V_{2}^{2}}{2}+g z_{2}+d W
\end{aligned}
$$

For negligible P.E. $g z_{1}=g z_{2}=0$
or

$$
\begin{aligned}
d W & =\wedge h_{1}-h_{2} \mathrm{~h}+\frac{\hat{V}^{\frac{1}{2}}-V^{2}+d Q}{\# 1 Q^{2} Q} 0 \mathrm{~h}^{2}-\wedge 5 \mathrm{~h}^{2} \mathrm{~B} \\
& =\wedge 3250-2360 \mathrm{~h}+\frac{2 \# 1000}{2}-5 \\
& =890+16.1875-5=901.2 \mathrm{~kW} / \mathrm{kg}
\end{aligned}
$$

Sol. 3 Option (B) is correct.
IN pipe
$p=5 \mathrm{bar}=5 \# 10^{5} \mathrm{~Pa}, T=500 \mathrm{~K}, V=50 \mathrm{~m} / \mathrm{sec}$ $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, c_{v}=0.718 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

For surrounding air

$$
p_{0}=1 \mathrm{bar}=1 \# 10^{5} \mathrm{~Pa}, T_{0}=300 \mathrm{~K}
$$

Available energy function is ${ }_{\wedge} \wedge h-h_{0} \mathrm{~h}-T_{0}{ }^{\wedge} S-S_{0} \mathrm{~h}+{ }_{2} V+g z$

$$
\overline{2}
$$

Given, the potential energy is negligible. Thus

$$
y={ }^{\text {al energy is negligible. Thus }}{ }^{\prime} h-h_{0} \mathrm{~h}-{ }_{2}{ }^{V}
$$

The entropy is given by

$$
\begin{gathered}
S=c_{p} \ln T-R \ln p \text { and } h=c_{p} T \\
y=c_{p} \wedge T-T_{0} \mathrm{~h}-T_{0} \epsilon_{p} \ln T-R \ln p-c_{p} \ln T_{0}+R \ln p{ }_{0}+\frac{V^{2}}{2} \mathrm{D} \\
y=c_{p} \wedge T-T_{0} \mathrm{~h}-T_{0} \epsilon_{p} \ln \mathrm{c} \frac{T}{T} \mathrm{~m}-R \ln \mathrm{~b}_{p} \frac{p}{p} \mathrm{E}+\frac{V^{2}}{2}
\end{gathered}
$$

So that

$$
\begin{gathered}
=1.005^{\wedge} 500-300 \mathrm{~h}-300 ; 1.005 \# \ln \underline{500}_{300} \mathrm{I}-0.287 \# \ln b_{1} \mathrm{IE}+\frac{{ }^{5}}{2 \neq 1000} \\
=187 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Given $\quad r_{p}=\frac{p_{2}}{p_{1}}=8, \quad g=1.4, T_{1}=300 \mathrm{~K}, T_{3}=1400 \mathrm{~K}, c_{p}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, h_{\mathrm{isen}}=0.8$
The process 1-2 (Isentropic compression)
Process $1-2 l$ (Actual compression)
Process 3-4 (Isentropic expansion)
Process 3-4l (Actual expansion)
For reversible adiabatic compression process 1 - 2

$$
\begin{aligned}
& \begin{array}{l}
\text { or } \\
\text { 桨 } \\
\text { Now }
\end{array} \\
& \begin{array}{l}
\text { or } \\
\text { K } \\
\text { Now }
\end{array} \\
& \underline{T}_{2}=\mathrm{b}_{1}^{\underline{p}_{2}{ }_{1}^{\mathrm{g-1}}}=\wedge 8 \mathrm{~h}^{\frac{2}{7}} \\
& T_{2}=300 \quad \wedge 8 \AA_{7}^{2}=543.43 \\
& h_{\text {isen }}=\frac{\text { Isentropic compressor work }}{\text { Actual compressor work }} \\
& W_{\text {actual }}=\frac{r \mathcal{A c}_{p}}{\left.p \frac{\left(T_{2}-T_{1}\right)}{h_{\text {isen }}}\right)} \\
& \frac{W_{\text {net }}}{n}-1 \not \underline{\underline{\#}} \frac{543.4 \underline{B}-300}{0.8} \\
& =304.3 \mathrm{~kW} / \mathrm{kg}
\end{aligned}
$$

Sol. 5 Option (A) is correct.
For process 2-3 ($p=$ constant $)$

$$
\frac{V_{2}}{T_{2}}=\frac{V_{3}}{T_{3}}
$$

Heat supplied

$$
Q_{i n}=c_{p}{ }^{\wedge} T_{3}-T_{2} \mathbf{I} h
$$

Now

$$
\begin{aligned}
& h_{\text {isen }}=\frac{W_{\text {actual }}}{W_{\text {isen }}}=\frac{h_{2}-h_{1}}{h_{2}-h_{1}} \\
& \wedge \frac{c}{c_{p}} \frac{T}{-\frac{-1}{1}-} T_{1} \mathrm{~h} \\
& c_{2} T_{2}-T_{1} \\
& T_{2}-T_{1} \\
& 0.8=\frac{543.43-300}{T_{2}-300} \\
& 0.8 T_{2}-240=243.43
\end{aligned}
$$

So that

$$
T_{2} \mathrm{I}=604.3 \mathrm{~K}
$$

$$
Q_{i n}=1 \not \#^{\wedge} 1400-604.3 \mathrm{~h}=795.7 \mathrm{~kJ} / \mathrm{kg}
$$

For process $3-4(p=$ constant $)$
or

$$
\frac{T_{3}}{T_{4}}=c \frac{p_{3}}{p_{T}} m^{\frac{g-1}{g}}=\wedge_{r} h^{g-1}
$$

$$
T_{4}=\frac{T_{3}}{\text { rrb }^{\frac{g-1}{g}}}=\frac{1400}{\wedge_{\text {gq }}^{1.4} 1.4-1}=772.86 \mathrm{~K}
$$

Now

$$
h_{\text {isen }}=\frac{W_{\text {actual }}}{W_{\text {isen }}}=\frac{h_{3}-h_{4} \underline{\square}}{h_{3}-h_{4}}=\frac{T_{3}}{T_{3}} \frac{-T_{4}}{-T_{4}} \underline{\square}
$$

$$
0.8=\frac{1400-T}{1400-772.86}
$$

or
$T_{4} \mathrm{I}=898.288 \mathrm{~K}$
Now

$$
W_{a c t}=c_{p}{ }^{\wedge} T_{3}-T_{4} \mathrm{lh}=1^{\wedge} 1400-898.288 \mathrm{~h}=501.712 \mathrm{~kJ} / \mathrm{kg}
$$

Hence

$$
\begin{aligned}
n_{\text {thermal }} & =\frac{W_{\text {act }}-W_{\text {comp }}}{Q_{\text {in }}} \\
& =\mathrm{b} \frac{501.712-304.3}{795.7} \mathrm{I} \neq 100 \\
& =24.8 \%
\end{aligned}
$$

Sol. 6 Option (B) is correct
For adiabatic expansion steam in turbine.

Given $h_{1}=3251.0 \mathrm{~kJ} / \mathrm{kg}, \quad m=10 \mathrm{~kg} / \mathrm{s}, x=0.9$ (dryness fraction)
At 15 kPa
Enthalpy of liquid,

$$
\begin{aligned}
h_{f} & =225.94 \mathrm{~kJ} / \mathrm{kg} \\
h_{g} & =2598.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Enthalpy of vapour,

$$
\begin{align*}
P & =\imath^{Q}\left(h_{1}-h_{2}\right) \quad(\mathrm{K} . \mathrm{E} \text { and P .E are negligible }) \tag{i}\\
h_{2} & =h_{f}+x h_{f g}=h_{f}+x\left(h_{g}-h_{f}\right) \\
& =225.94+0.9(2598.3-225.94)=2361.064 \mathrm{~kJ} / \mathrm{kg}
\end{align*}
$$

From Eq. (i)

$$
P=10 \#(3251.0-2361.064)=8899 \mathrm{~kW}=8.9 \mathrm{MW}
$$

Sol. $7 \quad$ Option (B) is correct.
We know that

$$
\begin{align*}
T d s & =d u+P d n \tag{i}\\
p n & =m R T
\end{align*}
$$

For ideal gas
For isothermal process

$$
T=\text { constan } \mathrm{t}
$$

For reversible process

$$
d u=0
$$

Then from equation (i)

$$
\begin{aligned}
& d s=\frac{p d n}{T}=\frac{m R T d n}{T}=m R \frac{d n}{n} \\
& \# d s=\stackrel{T}{D} s=m R \#_{n} \quad \underline{d R}=m R \ln \underline{n_{2}} \\
& D s=m R \ln \frac{n_{1}}{\substack{n_{1} \\
p_{1}}} \begin{array}{l}
p_{2}
\end{array} \quad: \frac{p_{1}}{p_{2}}=\frac{n_{2}}{n_{1}} \mathrm{D}
\end{aligned}
$$

Option (C) is correct.
From energy balance for steady flow system.

$$
\begin{align*}
E_{\text {in }} & =E_{\text {out }} \\
n \mathrm{~b} h_{1}+\frac{V_{1}^{2}}{2} \mathbf{I} & =\underset{\operatorname{mb} h_{2}+\frac{V_{2}^{2}}{2} \mathbf{I}}{h}=c_{p} T \tag{i}
\end{align*}
$$

As
Equation (1) becomes

$$
\begin{aligned}
c_{p} T_{1}+\frac{V_{1}^{2}}{2} & =c_{p} T_{2}+\frac{V_{2}^{2}}{2} \\
T & =c \frac{V_{1}^{2}-V_{2}^{2}}{2 \# c_{p_{1}}}+T \\
& =483.98-484 \mathrm{~K}
\end{aligned}
$$

Sol. 9 Option (D) is correct.
From Mass conservation.

$$
\begin{align*}
\mathfrak{Q}_{\text {in }} & =\mathfrak{n}_{\text {out }} \\
\underline{V}_{1} \underline{A}_{1} & =\frac{V_{2} \underline{A}_{2}}{n_{1}} \tag{i}
\end{align*}
$$

where

$$
n=\text { specific volume of air }=\frac{R T}{p}
$$

Therefore Eq. (1) becomes

$$
\begin{aligned}
p_{1} \frac{V_{1}}{R T_{1}} \underline{A}_{1} & =\frac{p_{2}-V_{2} \underline{A_{2}}}{R T_{2}} \\
A_{2} & =\frac{p_{1} \# V_{1} \# A_{1} \# T_{2}}{p_{2} \# V_{2} \# T_{1}}=\frac{300 \# 10 \# 80 \# 484}{100 \# 180 \# 500}=12.9 \mathrm{~cm}^{2}
\end{aligned}
$$

Option (D) is correct.
Work done is a quasi-static process between two given states depends on the path followed. Therefore,

But,

$$
\begin{aligned}
& \#_{1}^{\#} d W!W_{2}-W_{1} \quad d W \text { shows the inexact differential } \\
& \#_{1}^{2} d W=W_{1-2} \text { or }{ }_{1} W_{2}
\end{aligned}
$$

So, Work is a path function and Heat transfer is also a path function. The amount of heat transferred when a system changes from state 1 to state 2 depends on the intermediate states through which the system passes i.e. the path.

$$
\underset{1}{\#} d Q=Q_{1-2} \text { or }{ }_{1} Q_{2}
$$

$d Q$ shows the inexact differential. So, Heat and work are path functions.

Option (A) is correct.
Given : $R=23 \mathrm{~W}, i=10 \mathrm{~A}$
Since work is done on the system. So,

$$
W_{\text {electrical }}=-i^{2} R=-(10)^{2} \# 23=-2300 \mathrm{~W}=-2.3 \mathrm{~kW}
$$

Here given that tank is well-insulated.
So,
$D Q=0$
Applying the First law of thermodynamics,

And

$$
\begin{aligned}
D Q & =D U+D W \\
D U+D W & =0 \\
D W & =-D U \\
D U & =+2.3 \mathrm{~kW}
\end{aligned}
$$

Heat is transferred to the system
Option (A) is correct.
Given : $\quad h_{1}=2800 \mathrm{~kJ} / \mathrm{kg}=$ Enthalpy at the inlet of steam
turbine

$$
h_{2}=1800 \mathrm{~kJ} / \mathrm{kg}=\text { Enthalpy at the outlet of a steam }
$$

turbine
Steam rate or specific steam consumption

$$
=\frac{3600}{W_{T}-W_{p}} \mathrm{~kg} / \mathrm{kWh}
$$

Pump work W_{p} is negligible, therefore

$$
\text { Steam rate }=\frac{3600}{W_{T}} \mathrm{~kg} / \mathrm{kWh}
$$

And

$$
W_{T}=h_{1}-h_{2} \quad \text { From Rankine cycle }
$$

$$
\text { Steam rate }=\frac{3600}{h_{1}-h_{2}} \mathrm{~kg} / \mathrm{kWh} \quad=\frac{3600}{2800-1800}=3.60 \mathrm{~kg} / \mathrm{kWh}
$$

$$
\begin{aligned}
L & =2 r=2 \# 60=120 \mathrm{~mm} \quad \text { (cylinder diameter) } \\
n_{s} & =A \# L \\
& =\frac{\mathrm{D}}{4} D^{2} \# L=\frac{\mathrm{Q}}{4}(8.0)^{2} \# 12.0 \\
& =\frac{\mathrm{D}}{4}(8 \# 8) \# 12=602.88-603 \mathrm{~cm}^{3}
\end{aligned}
$$

Option (A) is correct.
Given p - n curve shows the Brayton Cycle.

Given : $p_{1}=1 \mathrm{bar}=p_{4}, p_{2}=6 \mathrm{bar}=p_{3}, T_{\text {minimum }}=300 \mathrm{~K}, T_{\text {maximum }}=1500 \mathrm{~K}$

$$
\frac{c_{p}}{c_{v}}=g=1.4
$$

We have to find T_{2} (temperature at the end of compression) or T_{4} (temperature at the end of expansion)

Applying adiabatic equation for process 1-2, we get

$$
\begin{array}{rlr}
\frac{T_{1}}{T} & =\mathrm{b} \frac{p_{1}}{p} \mathbf{I}^{\frac{q-1}{g}}=\mathrm{b} \frac{1}{6} \mathrm{I}^{\frac{1.4-1}{1.4}} \\
\frac{300}{T_{2}} & =\left.\mathrm{b} \frac{1}{6}\right|^{0.286} \\
T_{2} & =\frac{300}{\wedge_{1} १^{0.286}}=500.5 \mathrm{~K}-500 \mathrm{~K} & T_{1}=T_{\text {minimum }}
\end{array}
$$

Again applying for the Process 3-4,

So,

$$
\frac{T_{4}}{T}=\left.\mathrm{b} \frac{p_{4}}{p}\right|^{\frac{g-1}{g}}=\left.\mathrm{b} \frac{p_{1}}{p}\right|^{\frac{g-1}{g}}=\mathrm{b} \frac{1}{6}^{\frac{1.4-1}{1.4}}=\mathrm{b}_{6} \frac{1}{1}^{0.286}
$$

$$
T_{4}=\left.T_{3} \# \mathrm{~b} \underline{1}_{6}^{1}\right|^{0.286}=1500 \# \mathrm{~b} \underline{1}_{6}^{1}{ }^{0.286}=900 \mathrm{~K} \quad T_{3}=T_{\text {maximum }}
$$

Option (B) is correct.
Given : At station $p: p_{1}=150 \mathrm{kPa}, T_{1}=350 \mathrm{~K}$
At station Q :

$$
\begin{aligned}
& p_{2}=?, T_{2}=300 \mathrm{~K} \\
& \quad g=\frac{c_{p}}{c_{v}}=\frac{1.005}{0.718}=1.39
\end{aligned}
$$

We know,

Applying adiabatic equation for station P and Q,

$$
\begin{aligned}
& \frac{T}{T_{1}}={ }_{\mathrm{b}}^{p_{1}}{ }_{p_{1}}{ }_{\mathrm{l}}^{\mathrm{g}}{ }_{\mathrm{g}}^{\mathrm{q}-1}
\end{aligned}
$$

Option (C) is correct.
Given :
Pressure at Q

$$
p_{2}=50 \mathrm{kPa}
$$

Using the general relation to find the entropy changes between P and Q

$$
\begin{array}{r}
T d s=d h-n d p \\
d s=\frac{d h}{T}-\frac{\underline{n}}{T} d p \tag{i}
\end{array}
$$

Given in the previous part of the question

$$
h=c_{p} T
$$

Differentiating both the sides, we get

$$
d h=c_{p} d T
$$

Put the value of $d h$ in equation (i),

So,

$$
\begin{aligned}
d s & =c_{p} \frac{d T}{T}-\frac{n}{T} d p \quad \text { From the gas equation } n / T=R / p \\
& =c_{p} \frac{d T}{T}-R \frac{d p}{p}
\end{aligned}
$$

Integrating both the sides and putting the limits

$$
\# d s=c_{p} \#_{P}^{Q} \frac{d T}{T}-R \underset{P}{\#}{ }^{Q} \frac{d p}{p}
$$

Option (C) is correct.

Given : $T_{1}=400 \mathrm{~K}, p_{1}=3 \mathrm{bar}, A_{2}=0.005 \mathrm{~m}^{2}, p_{2}=50 \mathrm{kPa}=0.5 \mathrm{bar}$, $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, g=\frac{c_{p}}{c_{v}}=1.4, T_{2}=$?
Applying adiabatic equation for isentropic (reversible adiabatic) flow at section (1) and (2), we get

Apply perfect Gas equation at the exit,

$$
\begin{aligned}
p_{2} n_{2} & =m_{2} R T_{2} \\
p_{2} & =\frac{m_{2}}{n_{2}} R T_{2}=r_{2} R T_{2} \quad a \frac{m}{n}=r \mathrm{k} \\
r_{2} & =\frac{p_{2}}{R T_{2}}=\frac{50 \# 10^{3}}{0.287 \# 10^{3} \# 239.73}=0.727 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Option (D) is correct.
Given : $r_{2}=0.727 \mathrm{~kg} / \mathrm{m}^{3}, A_{2}=0.005 \mathrm{~m}^{2}, V_{2}=$?
For isentropic expansion,

$$
\begin{aligned}
V_{2} & =\sqrt{2 c_{p}\left(T_{1}-T_{2}\right)} \\
& =, 2 \neq 1.005 \neq 10^{3} \nRightarrow(400-239.73)
\end{aligned}
$$

$$
\text { for } \operatorname{air} c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

$$
=\sqrt{322142.7}=567.58 \mathrm{~m} / \mathrm{sec}
$$

Mass flow rate at exit,

$$
{ }^{1}=r_{2} A_{2} V_{2}=0.727 \# 0.005 \# 567.58=2.06 \mathrm{~kg} / \mathrm{sec}
$$

$$
\begin{aligned}
& \mathrm{b}^{\underline{T}} \mathbf{T}=\mathrm{b}^{\frac{p}{2}}{ }^{\mathrm{I}}{ }^{\mathrm{g-1}} \\
& { }^{1} T_{2}=T_{1} \mathrm{~b} p_{p}^{\frac{p}{2} I^{g}}=400 \mathrm{~b} \frac{0.5}{3}^{\frac{1.4-1}{1.4}} \\
& =400 \#(0.166)^{0.286}=239.73 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& 6 s \varrho_{P}^{Q}=c_{p} 6 \ln T \varrho_{P}^{Q}-R 6 \ln P \varrho_{P}^{Q} \\
& s_{Q}-s_{P}=c_{p} 6 \ln T_{Q}-\ln T_{P} @-R \ln p_{Q}-\ln p_{P} @ \\
& =c_{p} \operatorname{lnc} \frac{T_{Q}}{T} \mathrm{~m}-R \ln p{ }^{p_{Q}} \mathrm{I} \\
& =1.005 \ln \mathrm{~b} \frac{300}{350} \mathbf{I}-0.287 \ln \mathrm{~b}_{1} \frac{50}{50} \mathbf{I} \\
& =1.005 \text { \# }(-0.1541)-0.287 \boldsymbol{\#}(-1.099) \\
& =0.160 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

Option (A) is correct.
Given : $n=0.0259 \mathrm{~m}^{3}$, Work output $=950 \mathrm{~kW}, N=2200 \mathrm{rpm}$
Mean effective pressure

$$
\text { mep }=\frac{\text { Net work for one cycle }}{\text { displacement volume }}
$$

Number of power cycle

$$
n=\frac{N}{2}=\frac{2200}{2}=1100
$$

$$
\text { (for } 4 \text { stroke) }
$$

Hence, net work for one cycle

$$
\begin{aligned}
& =\frac{950 \# 10^{3}}{1100}=863.64 \mathrm{~W} \\
\text { So, } \quad \text { mep } & =\frac{60 \#}{\frac{\#}{0.0259}}=2 \# 10^{6} \mathrm{~Pa}=2 \mathrm{MPa}
\end{aligned}
$$

Option (D) is correct.
We know that,
Entropy of universe is always increases.

$$
\begin{aligned}
D s_{\text {universe }} & >0 \\
(D s)_{\text {system }}+(D s)_{\text {surrounding }} & >0
\end{aligned}
$$

Option (B) is correct.
We know from the clausius Inequality,
$\# \frac{d Q}{T}=0$, the cycle is reversible
$\# \frac{d Q}{T}<0$, the cycle is irreversible and possible

For case (a),

$$
\begin{aligned}
\# \frac{d Q}{T} & =\frac{2500}{1200}-\frac{2500}{800} \\
& =\frac{25}{12}-\frac{25}{8}=-1.041 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For case (b),

$$
\begin{aligned}
& \frac{\underline{T}}{T}=\mathrm{b} \frac{p_{2}}{p} \mathbf{I}^{\frac{q-1}{g}} \\
& \frac{T_{2}}{300} \mathrm{~b} \frac{0.2}{0.1} \frac{1}{}^{\frac{1.67-1}{1.67}}=(2)^{0.4012} \\
& T_{2}=300 \#(2)^{0.4012}=300 \# 1.32=396 \mathrm{~K}
\end{aligned}
$$

Work done in adiabatic process is given by

$$
\begin{aligned}
W & =\frac{p_{1} \underline{n}_{1}-p_{2} \underline{n}_{2}}{g-1}=\frac{R\left(T_{1}-T_{2}\right)}{g-1} \\
& =\frac{0.20785[300-396]}{1.67-1}=\frac{0.20785(-96)}{0.67}=-29.7 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(Negative sign shows the compression work)

$$
\begin{aligned}
& \# \frac{d Q}{{ }_{b}}=\frac{2000}{800}-\frac{2000}{500}=\frac{20}{8}-\frac{20}{5}=-1.5 \mathrm{~kJ} / \mathrm{kg} \\
& \# \frac{d Q}{T}>{ }_{a}^{\#} \frac{d Q}{T}
\end{aligned}
$$

So, process (b) is more irreversible than process (a)
Option (C) is correct.
Given T - s curve is for the steam plant

Given : $p_{1}=4 \mathrm{MPa}=4 \# 10^{6} \mathrm{~Pa}, T_{1}=350 \mathrm{cC}=(273+350) \mathrm{K}=623 \mathrm{~K}$
$p_{2}=15 \mathrm{kPa}=15 \# 10^{3} \mathrm{~Pa}, h_{\text {adiabatic }}=90 \%=09$
Now from the steam table,
Given data : $h_{1}=3092.5 \mathrm{~kJ} / \mathrm{kg}, h_{3}=h_{f}=225.94 \mathrm{~kJ} / \mathrm{kg}, h_{g}=2599.1 \mathrm{~kJ} / \mathrm{kg}$

Where,

$$
\begin{equation*}
s_{1}=s_{2}=s_{f}+x\left(s_{g}-s_{f}\right) \tag{i}
\end{equation*}
$$

From the table, we have

$$
\begin{aligned}
& \qquad \begin{aligned}
s_{f} & =0.7549 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
s_{g} & =8.0085 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
s_{1} & =s_{2}=6.5821 \\
\text { From equation (i), } x & =\frac{s_{2}-s_{f}}{s_{g}-s_{f}}=\frac{6.5821-0.7549}{8.0085-0.7549}=0.8033 \\
h_{2} & =h_{f}+x\left(h_{g}-h_{f}\right)=225.94+0.8033(2599.1-225.94) \\
& =225.94+1906.36=2132.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Theoretical turbine work from the cycle is given by,

$$
W_{T}=h_{1}-h_{2}=3092.5-2132.3=960.2 \mathrm{~kJ} / \mathrm{kg}
$$

Actual work by the turbine,

$$
\begin{aligned}
& =\text { Theoretical work \# } h_{\text {adiabatic }} \\
& =0.9 \# 960.2=864.18 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Pump work,

$$
\begin{align*}
W_{p} & =n_{f}\left(p_{1}-p_{2}\right) \\
& =0.001014(4000-15)=4.04 \mathrm{~kJ} / \mathrm{kg} \\
W_{\text {net }} & =W_{T}-W_{p}=864.18-4.04=860.14 \mathrm{~kJ} / \mathrm{kg} \tag{860}
\end{align*}
$$

Option (C) is correct

$$
\text { Heat supplied }=h_{1}-h_{4} \quad \text { From } T-s \text { diagram }
$$

From the pump work equation,

$$
\begin{aligned}
& W_{p}=h_{4}-h_{3} \\
& h_{4}=W_{p}+h_{3}=4.04+225.94=229.98 \mathrm{~kJ} / \mathrm{kg} \\
& \text { And Heat supplied, } \quad \begin{aligned}
Q & =h_{1}-h_{4} \\
& =3092.50-229.98=2862.53-2863 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Option (A) is correct.
We consider the cycle shown in figure, where A and B are reversible processes and C is an irreversible process. For the reversible cycle consisting of A and B.

$$
\begin{align*}
\#_{R} \frac{d Q}{T} & =\#_{A 1}^{2} \frac{d Q}{T}+\#_{B 2}^{1} \frac{d Q}{T}=0 \\
\#_{A 1}^{2} \frac{d Q}{T} & =-\#_{B 2}^{1} \frac{d Q}{T} \tag{i}
\end{align*}
$$

or

For the irreversible cycle consisting of A and C, by the inequality of clausius,

$$
\begin{equation*}
\# \frac{d Q}{T}=\#_{A 1}^{2} \frac{d Q}{T}+\#_{C 2}^{1} \frac{d Q}{T}<0 \tag{ii}
\end{equation*}
$$

From equation (i) and (ii)

$$
\begin{align*}
& -\#_{B 2}^{1} \frac{d Q}{T}+\#_{C 2}{ }^{1} \frac{d Q}{T}<0 \\
& \quad \#_{B 2}^{1} \frac{d Q}{T}>\#_{C 2}^{1} \frac{d Q}{T} \tag{iii}
\end{align*}
$$

Since the path B is reversible,

$$
\#_{B 2}^{1} \frac{d Q}{T}=\#_{B 2}^{1} d s
$$

Since entropy is a property, entropy changes for the paths B and C would be the same. Therefore,

From equation (iii) and (iv),

$$
\begin{equation*}
\#_{C_{2}}^{1} d s>\#_{C 2}^{1} \frac{d Q}{T} \tag{iv}
\end{equation*}
$$

Thus, for any irreversible process, $\quad d s>\frac{d Q}{T} \quad$ So, entropy must increase.

Option (A) is correct.
Given : $p_{1}=0.8 \mathrm{MPa}, n_{1}=0.015 \mathrm{~m}^{3}, n_{2}=0.030 \mathrm{~m}^{3}, T=$ Constant We know work done in a constant temperature (isothermal) process

$$
W=p_{1} n_{1} \ln \mathrm{a} \frac{n_{2}}{n} \mathrm{k}=\left(0.8 \# 10^{6}\right)(0.015) \ln \mathrm{b} \frac{0.030}{0.015} \mathrm{I}=8.32 \mathrm{~kJ}
$$

Option (B) is correct.

Steady flow energy equation for a compressor (Fig a) gives,

$$
\begin{equation*}
h_{1}+d Q=h_{2}+d W_{x} \tag{i}
\end{equation*}
$$

Neglecting the changes of potential and kinetic energy. From the property relation

$$
\begin{align*}
T d s & =d h-n d p \\
T d s & =d Q \tag{ii}\\
d Q & =d h-n d p
\end{align*}
$$

For a reversible process, $\quad T d s=d Q$
So,
If consider the process is reversible adiabatic then $d Q=0$
From equation (i) and (ii), $h_{1}-h_{2}=d W_{x} \quad \& d h=h_{2}-h_{1}=-d W_{x}$
And

$$
\begin{equation*}
d h=n d p \tag{iii}
\end{equation*}
$$

From equation (iii) and (iv), $-d W_{x}=n d p$

$$
W_{x}=-\# n d p
$$

Negative sign shows the work is done on the system (compression work) for initial and Final Stage

$$
W_{x}=\#_{1}^{2} n d p
$$

Option (D) is correct.
Given : $r=10, p_{1}=100 \mathrm{kPa}, T_{1}=27 \mathrm{c} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}$ $Q_{s}=1500 \mathrm{~kJ} / \mathrm{kg}, Q_{r}=700 \mathrm{~kJ} / \mathrm{kg}, R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

Mean Effective pressure

$$
\begin{equation*}
p_{m}=\frac{\text { Net work output }}{\text { Swept Volume }} \tag{i}
\end{equation*}
$$

Swept volume,

$$
n_{1}-n_{2}=n_{2}(r-1)
$$

where $n_{1}=$ Total volume and $n_{2}=$ Clearance volume

$$
\begin{equation*}
r=\frac{n_{1}}{n_{2}}=10 \quad \& n_{1}=10 v_{2} \tag{ii}
\end{equation*}
$$

Applying gas equation for the beginning process,

$$
\begin{aligned}
& \begin{aligned}
p_{1} n_{1} & =R T_{1} \\
n_{1} & =\frac{R T_{1}}{p_{1}}=\frac{0.287 \# 300}{100}=0.861 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned} \\
& n_{2}=\frac{n_{1}}{10}=\frac{0.861}{10}=0.0861 \mathrm{~m}^{3} / \mathrm{kg} \\
& W_{\text {net }}=Q_{s}-Q_{r}=(1500-700) \mathrm{kJ} / \mathrm{kg} \mathrm{~K}=800 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \text { From equation (i) } \\
& p_{m}=\frac{800}{n_{2(r-1)}}=\frac{800}{0.0861(10-1)} \\
& =\frac{800}{0.77 \overline{49}} 1032.391 \mathrm{kPa} \mathrm{~b} 1032 \mathrm{kPa}
\end{aligned}
$$

Option (C) is correct.

The coefficient of performance of a Heat pump for the given system is,

$$
(\mathrm{COP})_{H . P .}=\frac{Q_{3}}{Q_{3}-Q_{4}}=\frac{Q_{3}}{W}
$$

For a reversible process,

$$
\begin{aligned}
& Q=\frac{T_{3}}{T_{4}} \\
& Q^{\frac{3}{2}}
\end{aligned}{ }^{4} \begin{aligned}
(C O P)_{H . P .} & =\frac{T_{3}}{T_{3}-T_{4}}=\frac{Q_{3}}{W} \\
\frac{348}{348-290} & =\frac{Q_{3}}{50} \\
Q_{3} & =\frac{348 \# 50}{58}=300 \mathrm{~K}
\end{aligned}
$$

Option (A) is correct.
Given : $h_{1}=3200 \mathrm{~kJ} / \mathrm{kg}, V_{1}=160 \mathrm{~m} / \mathrm{sec}, z_{1}=10 \mathrm{~m}$

$$
p_{1}=3 \mathrm{mpA}, r 2=-\frac{d M}{d t}=20 \mathrm{~kg} / \mathrm{sec}
$$

It is a adiabatic process, So $d Q=0$
Apply steady flow energy equation [S.F.E.E .] at the inlet and outlet section of steam turbine,

$$
\begin{aligned}
h_{1}+\frac{K_{1}^{2}}{2} z g+\frac{d Q}{d m} & =h+\frac{V_{2}^{2}}{2} z g+\frac{d W}{d m} \\
d Q & =0
\end{aligned}
$$

So $\frac{d Q}{d m}=0$
And

$$
\begin{aligned}
& h_{1}+\frac{V_{1}^{2}}{2}+z_{1} g=h_{2}+\frac{V^{2}}{2}+z_{2} g+\frac{d W}{d m} \\
& \frac{d W}{d m}=\left(h_{1}-h_{2}\right)+\mathrm{b}^{\frac{V_{1}^{2}-V_{2}^{2}}{2} \mathrm{I}}+\left(z_{1}-z_{2}\right) g \\
&=(3200-2600) \neq 10^{3}+; \frac{(160)^{2}-(100)^{2}}{\mathrm{E}} \mathrm{E}+(10-6) 9.8 \\
&=600000+7800+39.20 \\
& \frac{d W}{d m}=607839.2 \mathrm{~J} / \mathrm{kg}=607.84 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Power output of turbine

$$
\begin{array}{rlr}
P & =\text { Mass flow rate } \# \frac{d W}{d m} & \\
& =20 \# 607.84 \# 10^{3} & \quad \neg=20 \mathrm{~kg} / \mathrm{sec} \\
P & =12.157 \mathrm{MJ} / \mathrm{sec}=12.157 \mathrm{MW} &
\end{array}
$$

Option (C) is correct.
Given: $\quad r=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Here given that ignoring kinetic and potential energy effects, So in the steady flow energy equation the terms $V^{2} / 2, Z_{1} g$ are equal to zero and $d Q$ is also zero for adiabatic process. S.F.E.E. is reduces to,

$$
h_{4}=h_{3}+\frac{d W_{p}}{d m} \quad \text { Here, } W_{p} \text { represents the pump work }
$$

where $h_{3}=$ Enthalpy at the inlet of pump and $h_{4}=$ Enthalpy at the outlet of the pump.

$$
\begin{equation*}
\frac{d W_{p}}{d m}=h_{4}-h_{3}=d h \tag{i}
\end{equation*}
$$

For reversible adiabatic compression,

$$
\begin{align*}
d Q & =d h-n d p \tag{dQ=0}\\
d h & =n d p \tag{ii}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{array}{ll}
\frac{d W_{p}}{d m}=n d p=\frac{1}{r}\left(p_{1}-p_{2}\right) & v=\frac{1}{r} \\
\frac{d W_{p}}{d m}=\frac{(3000-70) \mathrm{kPa}}{1000}=\frac{2930}{1000} \mathrm{kPa}=2.930 \mathrm{kPa}
\end{array}
$$

Option (B) is correct.
Given : $T_{1}=T_{2}, p_{1}=p_{2}$
Universal Gas constant $=R$. Here given oxygen are mixed adiabatically
So,

$$
\begin{aligned}
d Q & =0 \\
d s & =\frac{d Q}{T}=\frac{0}{T}=0
\end{aligned}
$$

We know,
Option (B) is correct.

Assumptions of air standard otto cycle :-
(A) All processes are both internally as well as externally reversible.
(B) Air behaves as ideal gas
(C) Specific heats remains constant ($c_{p} \& c_{v}$)
(D) Intake process is constant volume heat addition process and exhaust process is constant volume heat rejection process

Intake process is a constant volume heat addition process, From the given options, option (2) is incorrect.

Option (C) is correct.
Given : $p_{a}=100 \mathrm{kPa}, p_{s}=300 \mathrm{kPa}, \mathrm{Dn}=0.01 \mathrm{~m}^{3}$
Net pressure work on the system,

$$
\begin{aligned}
p & =p_{s}-p_{a}=300-100 \\
& =200 \mathrm{kPa}
\end{aligned}
$$

For constant pressure process work done is given by

$$
W=p D n=200 \# 0.01=2 \mathrm{~kJ}
$$

Option (A) is correct.
A heat engine cycle is a thermodynamic cycle in which there is a net Heat transfer from higher temperature to a lower temperature device. So it is a Heat Engine. Applying Clausius theorem on the system for checking the reversibility of the cyclic device.

$$
\begin{array}{r}
\# \frac{d Q}{T}=0 \\
\frac{Q_{1}}{T_{1}}+\frac{Q_{2}{ }^{R}-\frac{Q_{3}}{T_{2}}=0}{T_{3}}=0 \\
\frac{100 \# 10^{3}}{1000}+\frac{50 \# 10^{3}}{500}-\frac{60 \# 10^{3}}{300}=0 \\
100+100-200
\end{array}=0
$$

Here, the cyclic integral of $d Q$ / T is zero. This implies, it is a reversible Heat engine.
Option (C) is correct.
We know enthalpy,

$$
\begin{align*}
& h=U+p n \tag{i}\\
& U=\text { Internal energy } \\
& p=\text { Pressure of the room } \\
& n=\text { Volume of the room }
\end{align*}
$$

Where,

It is given that room is insulated, So there is no interaction of energy (Heat) between system (room) and surrounding (atmosphere).
It means Change in internal Energy $d U=0$ and $U=$ Constant
And temperature is also remains constant.
Applying the perfect gas equation,

$$
\begin{aligned}
& p n=n R T \\
& p n=\text { Constant }
\end{aligned}
$$

Therefore, from equation (i)

$$
h=\text { Constant }
$$

So this process is a constant internal energy and constant enthalpy process.

Alternate Method :

We know that enthalpy,

$$
h=U+p n
$$

Given that room is insulated, So there is no interaction of Energy (Heat) between system (room) and surrounding (atmosphere).

It means internal Energy $d U=0$ and $U=$ constant.
Now flow work $p n$ must also remain constant thus we may conclude that during free expansion process $p n$ i.e. product of pressure and specific volume change in such a way that their product remains constant.
So, it is a constant internal energy and constant enthalpy process.

Option (A) is correct.
Given : $p_{1}=1 \mathrm{MPa}, T_{1}=350 \mathrm{CC}=(350+273) \mathrm{K}=623 \mathrm{~K}$
For air $g=1.4$
We know that final temperature $\left(T_{2}\right)$ inside the tank is given by,

$$
T_{2}=g T_{1}=1.4 \# 623=872.2 \mathrm{~K}=599.2 \mathrm{cC}
$$

T_{2} is greater than 350 cC .
Option (A) is correct.
Given : $h_{1}=2800 \mathrm{~kJ} / \mathrm{kg}, h_{2}=200 \mathrm{~kJ} / \mathrm{kg}$
From the given diagram of thermal power plant, point 1 is directed by the Boiler to the open feed water heater and point 2 is directed by the pump to the open feed water Heater. The bleed to the feed water heater is 20% of the boiler steam generation i.e. 20% of h_{1}

So,

$$
\begin{aligned}
h_{3} & =20 \% \text { of } h_{1}+80 \% \text { of } h_{2} \\
& =0.2 \# 2800+0.8 \# 200=720 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Option (C) is correct.
From the first law of thermodynamic,

$$
\begin{array}{r}
d Q=d U+d W \\
d W=d Q-d U \tag{i}
\end{array}
$$

If the process is complete at the constant pressure and no work is done other than the $p d n$ work. So

$$
d Q=d U+p d n
$$

At constant pressure $\quad p d n=d(p n)$

$$
(d Q)=d U+d(p n)=d(U+p n)=(d h) \quad h=U+p n
$$

From equation (i)

$$
\begin{equation*}
d W=-d h+d Q=-d h+T d s \quad d s=d Q / T \tag{ii}
\end{equation*}
$$

For an reversible process,

$$
\begin{align*}
T d s & =d h-n d p \\
-n d p & =-d h+T d s \tag{iii}
\end{align*}
$$

From equation (ii) and (iii)

$$
d W=-n d p
$$

On integrating both sides, we get

$$
W=-\# n d p
$$

It is valid for reversible process.

Option (A) is correct.
When the vapour is at a temperature greater than the saturation temperature, it is said to exist as super heated vapour. The pressure and Temperature of superheated vapour are independent properties, since the temperature may increase while the pressure remains constant. Here vapour is at 400c C and saturation temperature is 200c C.
So, at 200 kPa pressure superheated vapour will be left in the system.
Option (D) is correct.
Given : $p_{1}=100 \mathrm{kPa}, p_{2}=200 \mathrm{kPa}$. Let, $n_{1}=n$
Now, given that Heat transfer takes place into the system until its volume increases by 50\%

So,

$$
n_{2}=n+50 \% \text { of } n
$$

Now, for work done by the system, we must take pressure is $p_{2}=200 \mathrm{kPa}$, because work done by the system is against the pressure p_{2} and it is a positive work done. From first law of thermodynamics,

$$
\begin{equation*}
d Q=d U+d W \tag{i}
\end{equation*}
$$

But for a quasi-static process,

$$
T=\text { Constant }
$$

Therefore, change in internal energy is

$$
d U=0
$$

From equation (i)

$$
\begin{array}{rlr}
d Q & =d W=p d n & d W=p d n \\
& =p\left[n_{2}-n_{1}\right] &
\end{array}
$$

For initial condition at 100 kPa ,volume

$$
n_{1}=m_{\text {liquid }} \# \frac{1}{r_{f}}+m_{\text {vapour }} \# 1
$$

Here

$$
\begin{aligned}
& \frac{1}{r_{f}}=n_{f}=0.001, \frac{1}{r_{f}}=n_{g}=0.1 \\
& m_{\text {liquid }}=1 \mathrm{~kg}, m_{\text {vapour }}=0.03 \mathrm{~kg} \\
& n_{1}=1 \# 0.001+0.03 \# 0.1=4 \# 10^{-3} \mathrm{~m}^{3} \\
& n_{2}=\frac{3}{2} n_{1}=\frac{3}{2} \# 4 \# 10^{-3}=6 \# 10^{-3} \mathrm{~m}^{3} \\
& =200 \# 10^{3} \cdot \frac{3 n}{2}-n \mathrm{D} \\
& =200 \#\left[6 \# 10^{-3}-4 \not \# 10^{-3}\right]=200 \# 2 \# 10^{-3}=0.4 \mathrm{~kJ}
\end{aligned}
$$

So

Option (C) is correct.

$$
\begin{equation*}
D s_{\text {net }}=(D s)_{\text {system }}+(D s)_{\text {surrounding }} \tag{i}
\end{equation*}
$$

And it is given that,

$$
(D s)_{\text {system }}=10 \mathrm{~kJ}
$$

Also,

$$
(D s)_{\text {surrounding }}=\mathrm{b}_{T}^{Q} \mathrm{I}_{\text {surrounding }}
$$

Heat transferred to the system by thermal reservoir,

$$
\begin{aligned}
T & =400 \mathrm{cC}=(400+273) \mathrm{K}=673 \mathrm{~K} \\
Q & =1 \mathrm{~kJ} \\
(\mathrm{D})_{\text {surrounding }} & =\frac{1000}{673}=1.485 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

From equation (i) $(D s)_{n e t}=10-1.485=8.515 \mathrm{~J} / \mathrm{K}$
(Take Negative sign, because the entropy of surrounding decrease due to heat transfer to the system.)

Option (D) is correct.
In this question we discuss on all the four options.
(A) $\mathrm{d} Q=d U+\mathrm{d} W \quad$ This equation holds good for any process undergone by a closed stationary system.
(B) $T d s=d U+p d n \quad$ This equation holds good for any process reversible or irreversible, undergone by a closed system.
(C) $T d s=d U+d W \quad$ This equation holds good for any process, reversible or irreversible, and for any system.
(D) $\mathrm{d} Q=d U+p d n \quad$ This equation holds good for a closed system when only $p d n$ work is present. This is true only for a reversible (quasi-static) process.

Option (A) is correct.
Given : $n_{c r i}=0.003155 \mathrm{~m}^{3} / \mathrm{kg}, n=0.025 \mathrm{~m}^{3}, p=0.1 \mathrm{MPa} \quad$ and $m=10 \mathrm{~kg}$ We know, Rigid means volume is constant.

Specific volume,

$$
n_{S}=\frac{n}{m}=\frac{0.025}{10}=0.0025 \mathrm{~m}^{3} / \mathrm{kg}
$$

We see that the critical specific volume is more than the specific volume and during the heating process, both the temperature and the pressure remain constant, but the specific volume increases to the critical volume (i.e. critical point). The critical point is defined as the point at which the saturated liquid and saturated vapour states are identical.

So, point (B) will touch the saturated liquid line and the liquid line will rise at the point O.

Option (C) is correct.
Given : $L=250 \mathrm{~mm}=0.25 \mathrm{~m}, D=200 \mathrm{~mm}=0.2 \mathrm{~m}$,

$$
n_{c}=0.001 \mathrm{~m}^{3}, g=\frac{c_{p}}{c_{v}}=1.4
$$

Swept volume

$$
\begin{aligned}
n_{s} & =A \# L=\frac{D}{4}(D)^{2} \# L \\
& =\frac{D}{4}(0.2)^{2} \# 0.25=0.00785 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { Compression ratio } \quad r=\frac{n_{T}}{n_{c}}=\frac{n_{\underline{c}}+n_{s}}{n_{c}}=\frac{0.001+0.00785}{0.001}=8.85
$$

Air standard efficiency

$$
h=1-\frac{1}{(r)^{g-1}}=1-\frac{1}{(885)^{1.4-1}}
$$

$$
=1-\frac{1}{2.3}=1-0.418=0.582 \text { or } 58.2 \%
$$

Option (A) is correct.
Following combination is correct
(R) The work done by a closed system in an adiabatic is a point function.
(S) A liquid expands upon freezing when the slope of its fusion curve on pressuretemperature diagram is negative.

Option (B) is correct.
We know, dryness fraction or quality of the liquid vapour mixture,

$$
\begin{equation*}
x=\frac{m_{v}}{m_{v}+m_{l}}=\frac{1}{m_{l} / m_{v}} 1+ \tag{i}
\end{equation*}
$$

Where,
$m_{v}{ }^{\text {" }}$ Mass of vapour and $m_{l}{ }^{\text {" }}$ Mass of liquid
The value of x varies between 0 to 1 . Now from equation (i) if incorporation of reheater in a steam power plant adopted then Mass of vapour m_{v} increase and Mass of liquid m_{l} decreases So, dryness fraction x increases.
In practice the use of reheater only gives a small increase in cycle efficiency, but it increases the net work output by making possible the use of higher pressure.

Option (C) is correct.
In the given $p-n$ diagram, three processes are occurred.
(i) Constant pressure (Process 1-2)
(ii) Constant Volume (Process 2-3)
(iii) Adiabatic (Process 3-1)

We know that, Constant pressure and constant volume lines are inclined curves in the $T-s$ curve, and adiabatic process is drawn by a vertical line on a $T-s$ curve.

Given p - n curve is clock wise. So $T-s$ curve must be clockwise.
Option (A) is correct.

This cycle shows the Lenoir cycle.
For Lenoir cycle efficiency is given by

Where,

$$
\begin{gathered}
h_{L} \mathrm{f}^{r-1} \frac{\frac{1}{9}}{p_{p}}=9 \\
r_{p}=\frac{p_{2}}{p_{1}}=\frac{400}{100}=4
\end{gathered}
$$

And

$$
g=\frac{c_{p}}{c_{v}}=1.4(\text { Given })
$$

$$
h_{L}==(4)^{\frac{1}{1.4}} 1 \cdot \frac{1}{n 780}=n 014^{-1}-
$$

$$
h_{L}=21.1 \%-21 \%
$$

Applying energy balance on the system,

$$
\begin{align*}
& Q=Q_{1}+Q_{2} \\
& Q_{2}=Q-Q_{1}=100-Q_{1} \tag{i}
\end{align*}
$$

Apply Clausicus inequality on the system,

$$
\begin{aligned}
\frac{Q}{T} & =\frac{Q_{1}}{T_{1}}+\frac{Q_{2}}{T_{2}} \\
\frac{100}{350} & =\frac{Q_{1}}{400}+\frac{Q_{2}}{300}
\end{aligned}
$$

Substitute the value of Q_{2} from equation (i),

$$
\begin{aligned}
\frac{100}{350} & =\frac{Q_{1}}{400}+\mathrm{b} \frac{100-Q_{1}}{300} \mathrm{I}=\frac{Q_{1}}{40}+\frac{100}{300}-\frac{Q_{1}}{300} \\
\frac{100}{350}-\frac{100}{300} & =Q_{1} \frac{1}{400}-\frac{1}{300} \mathrm{D} \\
-\frac{1}{21} & =-\frac{Q_{1}}{1200} \\
Q_{1} & =\frac{1200}{21}=57.14 \mathrm{~kJ}
\end{aligned}
$$

So,
Therefore the maximum amount of heat that can be transferred at 400 K is 57.14 kJ .

Option (D) is correct.
When the temperature of a liquid is less than the saturation temperature at the given pressure, the liquid is called compressed liquid (state 2 in figure).

The pressure and temperature of compressed liquid may vary independently and a table of properties like the superheated vapor table could be arranged, to give the properties at any p and T.

The properties of liquids vary little with pressure. Hence, the properties are taken from the saturation table at the temperature of the compressed liquid.
So, from the given table at $T=45 \mathrm{C}$ C, Specific enthalpy of water $=188.45 \mathrm{~kJ} / \mathrm{kg}$.

Option (A) is correct.

The thermal efficiency of a power plant cycle increases by increase the average temperature at which heat is transferred to the working fluid in the boiler or decrease the average temperature at which heat is rejected from the working fluid in the condenser. Heat is transferred to the working fluid with the help of the feed water heater.
So, (A) and (R) are true and (R) is the correct reason of (A).
Option (D) is correct.
(A) Condenser is an essential equipment in a steam power plant because when steam expands in the turbine and leaves the turbine in the form of super saturated steam. It is not economical to feed this steam directly to the boiler. So, condenser is used to condensed the steam into water and it is a essential part (equipment) in steam power plant.
Assertion (A) is correct.
(R) The compressor and pumps require power input. The compressor is capable of compressing the gas to very high pressures. Pump work very much like compressor except that they handle liquid instead of gases. Now for same mass flow rate and the same pressure rise, a water pump require very less power because the specific volume of liquid is very less as compare to specific volume of vapour.

Sol. 54

E

F

Option (D) is correct
Group Group (II)
(I)

When added to Differential Function Phenomenon the system

H

J	K	N
J	K	M

So correct pairs are
E-G-J-K-N and F-H-J-K-M
Option (A) is correct.
We draw $p-v$ diagram for the cycles.
(a) Rankine cycle

Constant Pressure Process
$Q_{1}=$ Heat addition at constant p and $Q_{2}=$ Heat Rejection at constant p
(b) Otto cycle

Constant Volume Process
$Q_{1}=$ Heat addition at constant n and $Q_{2}=$ Heat Rejection at constant n
(c) Carnot cycle

Constant Temperature Process (Isothermal)
$Q_{1}=$ Heat addition at constant T and $Q_{2}=$ Heat Rejection at constant T
(d) Diesel cycle

Constant Pressure and constant volume process
$Q_{1}=$ Heat addition at constant p and $Q_{2}=$ Heat rejection at constant V
(e) Brayton cycle

Constant pressure Process
$Q_{1}=$ Heat addition at constant p and $Q_{2}=$ Heat rejection at constant p
From the Five cycles, we see that $\quad \mathbf{P}-\mathbf{S}-5, \mathrm{R}-\mathrm{U}-3, \mathrm{P}-\mathrm{S}-1, \mathrm{Q}-\mathrm{T}-2$ are the correct pairs.

Option (D) is correct.
Given :

$$
\begin{aligned}
p_{\text {gauge }} & =1 \mathrm{bar} \\
p_{\text {absolute }} & =p_{\text {atm }}+p_{\text {gauge }}
\end{aligned}
$$

So,

$$
p_{a b s}=1.013+1=2.013 \mathrm{bar} \quad p_{\text {atm }}=1.013 \mathrm{bar}
$$

$$
\begin{aligned}
& T_{1}=15 \mathrm{cC}=(273+15) \mathrm{K}=288 \mathrm{~K} \\
& T_{2}=5 \mathrm{c} \mathrm{C}=(273+5) \mathrm{K}=278 \mathrm{~K}
\end{aligned}
$$

Volume $=$ Constant

$$
n_{1}=n_{2}=2500 \mathrm{~cm}^{3}=2500 \#\left(10^{-2}\right)^{3} \mathrm{~m}^{3}
$$

From the perfect gas equation,

$$
p n=m R T
$$

$2.013 \# 10^{5} \# 2500 \#\left(10^{-2}\right)^{3}=m \# 287 \# 288$
$2.013 \# 2500 \# 10^{-1}=m \neq 287 \# 288$

$$
m=\frac{2.013 \# 250}{287}=0.0060 \mathrm{~kg}
$$

For constant Volume, relation is given by,

$$
\begin{aligned}
Q & =m c_{v} d T \quad c_{v}=0.718 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \\
& =0.0060 \nRightarrow 0.718 \nRightarrow(278-288) \quad d T=T_{2}-T_{1} \\
Q & =-0.0437=-43.7 \# 10^{-3} \mathrm{~kJ} \\
& =-43.7 \text { Joule } \quad \text { Negative sign shows the heat lost }
\end{aligned}
$$

As the process is isochoric i.e. constant volume, So from the prefect gas equation,

And

$$
\frac{p}{T}=\text { Constant }
$$

$$
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}
$$

$$
p_{2}=\frac{T_{2}}{T_{1}} \# p_{1}=\frac{278}{288} \# 2.013=1.943 \mathrm{bar} \quad p_{1}=p_{a b s}
$$

So, \quad Gauge Pressure $=$ Absolute pressure - atmospheric pressure

$$
p_{\text {gauge }}=1.943-1.013=0.93 \mathrm{bar}
$$

Sol. 57 Option (C) is correct.
It is a constant volume process, it means

$$
\begin{aligned}
& \frac{p}{T}=\text { Constant } \\
& \frac{p}{1}=\frac{T_{1}}{T_{2}} \\
& \frac{1}{p} \\
& 2
\end{aligned}
$$

Substitute, $T_{1}=288$ and $T_{2}=278$

So,

$$
\begin{aligned}
& p_{2}=p_{2, \text { gauge }}+p_{\text {atm. }}=1+1.013=2.013 \mathrm{bar} \\
& p_{1}=\frac{T_{1}}{T_{2}} \# p_{2}=\frac{288}{278} \# 2.013=2.08 \mathrm{bar}
\end{aligned}
$$

Gauge pressure,

$$
p_{\text {gauge }}=2.08-1.013=1.067-1.07 \mathrm{bar}
$$

Option (A) is correct.
From the first law of thermodynamics for a cyclic process,

And

$$
\begin{aligned}
D U & =0 \\
\# d Q & =\# d W
\end{aligned}
$$

The symbob \# $d Q$, which is called the cyclic integral of the heat transfer represents the heat transfer during the cycle and $\# d W$, the cyclic integral of the work, represents the work during the cycle.
We easily see that figure 1 and 2 satisfies the first law of thermodynamics. Both the figure are in same direction (clockwise) and satisfies the relation.

$$
\# \mathrm{~d} Q=\# \mathrm{~d} W
$$

Option (D) is correct

From above figure, we can easily see that option (D) is same.

Now check the given processes :-
(i) Show in $p-n$ curve that process 1-2 and process 3-4 are Reversible isothermal process.
(ii) Show that process 2-3 and process 4-1 are Reversible adiabatic (isentropic) processes.
(iii) In carnot cycle maximum and minimum cycle pressure and the clearance volume are fixed.
(iv) From $p-n$ curve there is no polytropic process.

So, it consists only one cycle [carnot cycle]
Option (B) is correct.
Given : $p_{1}=10$ bar, $n_{1}=1 \mathrm{~m}^{3}, T_{1}=300 \mathrm{~K}, n_{2}=2 \mathrm{~m}^{3}$
Given that Nitrogen Expanded isothermally.
So,

$$
R T=\text { Constant }
$$

And from given relation,

$$
\begin{aligned}
\text { a } p+\frac{a}{n^{2}} \mathrm{k}^{n} & =R T=\text { Constant } \\
p_{1} n_{1}+\underline{a} & =p_{2} n_{2}+\frac{a}{n_{2}} \\
n_{1} & n_{1} \\
p_{2} n_{2} & =p_{1} n_{1}+\underline{a}-\underline{a} \\
n_{1} & n_{2}
\end{aligned}
$$

$=5+\frac{\pi}{4}$

$$
p_{2}=p_{1} n_{1} n_{2} \mathrm{k}+a_{\mathrm{C}_{1} n_{2}}^{1}-\frac{1}{n_{2}} \mathrm{n}_{2}=10 \mathrm{~b} \frac{1}{2} \mathrm{l}+a_{\mathrm{b}} \frac{1}{2}-\frac{1}{4} \mathrm{l}
$$

Here $a>0$, so above equation shows that p_{2} is greater than 5 and +ve .

Option (B) is correct.
Velocity of flow,

$$
u=u_{1}=u_{2}=\text { constan } t
$$

\&

$$
W_{2} \gg W_{1}
$$

$W=$ Whirl velocity
Hence, it is a diagram of reaction turbine.

So,
Option (B) is correct.
We know that efficiency,

Option (A) is correct.

From the previous part of the question
$T_{3(\text { otto })}=600 \mathrm{~K}, T_{3(\text { Brayton })}=550 \mathrm{~K}$
From the $p-v$ diagram of Otto cycle, we have

$$
\begin{equation*}
W_{O}=Q_{1}-Q_{2}=c_{v}\left(T_{3}-T_{2}\right)-c_{v}\left(T_{4}-T\right) \tag{i}
\end{equation*}
$$

For process 3-4,

$$
\frac{T_{3}}{T_{4}}=\mathrm{a} \underline{n}_{4}^{n_{3}} k^{g-1}=a \underline{n}_{1}^{1} k_{2}^{g-1} \quad n_{4}=n_{1}, n_{3}=n_{2}
$$

For process 1-2,

So,

$$
\frac{T_{2}}{T_{1}}=\frac{n_{1} g}{a_{n}} \overline{\mathrm{k}}^{1}
$$

$$
\begin{aligned}
& \frac{T_{3}}{T_{4}}=\frac{T_{2}}{T_{1}} \\
& T_{4}=\frac{T_{3}}{T_{2}} \# T_{1}=\frac{600}{450} \# 300=400 \mathrm{~K}
\end{aligned}
$$

And

$$
\begin{align*}
& W_{O}=c_{v}(600-450)-c_{v}(400-300) \\
& \quad=c_{v}(150)-100 c_{v}=50 c_{v} \tag{ii}
\end{align*}
$$

From $p-n$ diagram of brayton cycle, work done is,

$$
\begin{aligned}
W_{B} & =Q_{1}-Q_{2}=c_{p}\left(T_{3}-T_{2}\right)-c_{p}\left(T_{4}-T_{1}\right) \\
T_{4} & =\frac{T_{1}}{T_{2}} \# T_{3}=\frac{300}{450} \# 550=366.67 \mathrm{~K}
\end{aligned}
$$

And

$$
W_{B}=c_{p}(550-450)-c_{p}(366.67-300)=33.33 c_{p} \ldots(\text { iii })
$$

Dividing equation (ii) by (iii), we get

$$
\begin{aligned}
\frac{W_{O}}{W_{B}} & =\frac{50 c_{c_{-}}}{33.33 c_{p}}=\frac{50}{33.33 \mathrm{~g}} \\
& =\frac{50}{33.33 \# 1.4}=\frac{50}{46.662}>1
\end{aligned}
$$

$$
\underline{c_{p}}=g, g=1.4
$$

$$
c_{v}
$$

From this, we see that,

$$
W_{O}>W_{B}
$$

Option (C) is correct.
$W=-5000 \mathrm{~kJ}$ (Negative sign shows that work is done on the system)
$Q=-2000 \mathrm{~kJ}$ (Negative sign shows that heat rejected by the system)
From the first law of thermodynamics,

So,

$$
\begin{aligned}
D Q & =D W+D U \\
D U & =D Q-D W=-2000-(-5000) \\
& =3000 \mathrm{~kJ}
\end{aligned}
$$

Option (A) is correct.
The T - s curve for simple gas power plant cycle (Brayton cycle) is shown below :

From the T - s diagram, Net work output for Unit Mass,

$$
\begin{equation*}
W_{n e t}=W_{T}-W_{c}=c_{p} 6\left(T_{3}-T_{4}\right)-\left(T_{2}-T_{1}\right) @ \tag{i}
\end{equation*}
$$

And from the $T-s$ diagram,

$$
T_{3}=T_{\max } \text { and } T_{1}=T_{\min }
$$

Apply the general relation for reversible adiabatic process, for process 3-4 and 1-2,

$$
\begin{aligned}
& \underline{T}_{3}=\mathrm{b}_{p_{4}}^{p_{3} \mathrm{c}^{\mathrm{c}^{g-1}} \mathrm{~m}}=\left(r_{p}\right)^{g}{ }^{g-1}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{T}_{1}=\mathrm{b}^{\frac{p_{2}}{}{ }_{1}^{q-1}}=\left(r_{p}\right)^{\frac{g-1}{g}}
\end{aligned}
$$

$$
\begin{align*}
T_{2} & =T_{1} \wedge r_{h} \overline{g-1} \\
W_{\text {net }} & =c_{p} 9 T_{3}-T_{3}\left(r_{p}\right)^{-c^{g-1}}{ }^{\bar{m}}-T_{1}\left(r_{p}\right)^{\overline{g-1}}+T_{1} \mathrm{C} \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& d r_{p} \quad{ }_{p}=3 \mathrm{C} \quad \mathrm{~g} \mathrm{~m}_{p} \mathrm{~g} \quad 1 \mathrm{C} \quad \mathrm{~g} \mathrm{~m}_{p}^{\mathrm{g}} \quad \mathrm{G} \\
& =c_{p}=T_{3} C-\frac{g-1}{g} m r_{p}{ }^{\mathrm{c}} \frac{-g+1-g}{g} \mathrm{~m}-T_{1} C \frac{g-1}{g} m r_{p}{ }^{b-\frac{1}{g} I_{G}} \\
& \begin{array}{l}
=c_{p}=T_{3} C-\frac{g-1}{g} m r_{p}^{\delta^{\frac{1-2 g}{g}} m}-T_{1} C \frac{g-1}{g} m r_{p}^{b-\frac{1}{g}} \mathrm{I}_{\mathrm{G}} \\
T r^{b^{-\frac{1}{1}} \mathrm{I}}=0
\end{array} \\
& T r^{b^{\frac{1}{-2}}-T r^{b^{-\frac{1}{-}}}=0} \\
& { }^{3} p^{g} \quad \operatorname{Tr}^{{ }^{1} p^{\mathrm{b}}{ }^{\mathrm{b}-2 \mathrm{I}}}=\operatorname{Tr}^{-\frac{1}{2}} \\
& 3 p^{g} \quad 1 p^{g}
\end{aligned}
$$

So,
Option (C) is correct.

Stoichiometric mixture :

The S.M. is one in which there is just enough air for complete combustion of fuel.

Option (C) is correct.
When all cylinders are firing then, power is $3037 \mathrm{~kW}=$ Brake Power
Power supplied by cylinders (Indicated power) is given below :

Cylinder No.	Power supplied (I.P.)
1.	I.P. $_{1}=3037-2102=935 \mathrm{~kW}$
2.	I.P. $_{2}=3037-2102=935 \mathrm{~kW}$
3.	I.P. $_{3}=3037-2100=937 \mathrm{~kW}$
4.	I.P. $_{4}=3037-2098=939 \mathrm{~kW}$

Option (D) is correct.
Given : $D=10 \mathrm{~cm}=0.1$ meter , $L=15 \mathrm{~cm}=0.15$ meter
$g=\frac{c_{p}}{c_{v}}=1.4, n_{c}=196.3 \mathrm{cc}, Q=1800 \mathrm{~kJ} / \mathrm{kg}$

$$
n_{s}=A \# L=\frac{Q}{4} D^{2} \# L=\frac{Q}{4} \#(10)^{2} \# 15=\frac{1500 \mathrm{p}}{4}=1177.5 \mathrm{cc}
$$

And Compression ratio, $\quad r=\frac{n_{\underline{T}}}{n_{c}}=\underline{n}_{\underline{c}}+n_{s}=\frac{196.3+1177.5}{n_{c}}=6.998-7$
Cycle efficiency,

$$
\begin{aligned}
& h_{\text {Otto }}=1-\frac{1}{(r)^{g-1}}=1-\frac{1}{(7)^{1.4-1}}=1-\frac{1}{2.1779}=1-0.4591=0.5409 \\
& h_{\text {Otto }}=54.09 \% \\
& \text { that, } \\
& h=\frac{\text { Work output }}{\text { Heat Supplied }}
\end{aligned}
$$

We know that,
Work output $=h \#$ Heat supplied $=0.5409 \# 1800=973.62 \mathrm{~kJ}-973.5 \mathrm{~kJ}$

Option (A) is correct

Solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$. This radiation is stored in the form of internal energy. Internal energy of fluid after absorbing.

Solar radiation,

$$
\begin{aligned}
D U & =\frac{1}{2} \# 0.6 \quad \text { Efficiency of absorbing radiation is } 50 \% \\
& =0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
h_{\text {Engine }} & =1-\frac{T_{2}}{T_{1}}=\frac{W_{n e t}}{Q_{1}} \\
Q_{1} & =\frac{W_{n e t} \# T_{1}}{T_{1}-T_{2}}=\frac{2.5 \# 350}{350-315}=25 \mathrm{~kW}
\end{aligned}
$$

Let, A is the minimum area of the solar collector.
So,

$$
\begin{aligned}
Q_{1} & =A \# D U=A \# 0.3 \mathrm{~kW} / \mathrm{m}^{2} \\
A & =\frac{Q_{1}}{0.3}=\frac{25}{0.3}=\frac{250}{3}=83.33 \mathrm{~m}^{2}
\end{aligned}
$$

Option (B) is correct.
Given : $h_{1}=29.3 \mathrm{~kJ} / \mathrm{kg}, h_{3}=3095 \mathrm{~kJ} / \mathrm{kg}, h_{4}=2609 \mathrm{~kJ} / \mathrm{kg}, h_{5}=3170 \mathrm{~kJ} / \mathrm{kg}$ $h_{6}=2165 \mathrm{~kJ} / \mathrm{kg}$
Heat supplied to the plant,

$$
\begin{aligned}
Q_{S} & =\left(h_{3}-h_{1}\right)+\left(h_{5}-h_{4}\right) \quad \text { At boiler and reheater } \\
& =(3095-29.3)+(3170-2609)=3626.7 \mathrm{~kJ}
\end{aligned}
$$

Work output from the plant,

Now,

$$
\begin{array}{rlr}
W_{T}=\left(h_{3}-h_{4}\right)+ & \left(h_{5}-h_{6}\right)=(3095-2609)+(3170-2165)=1491 \mathrm{~kJ} \\
h_{\text {thermal }} & =\frac{W_{T}-W_{p}}{Q_{s}}=\frac{W_{T}}{Q_{s}} & \text { Given, } W_{p}=0 \\
& =\frac{1491}{3626.7}=0.411=41.1 \% &
\end{array}
$$

Option (D) is correct.
From the figure, we have enthalpy at exit of the pump must be greater than at inlet of pump because the pump supplies energy to the fluid.

$$
h_{2}>h_{1}
$$

So, from the given four options only one option is greater than h_{1}

$$
h_{2}=33.3 \mathrm{~kJ} / \mathrm{kg}
$$

Option (B) is correct.
Equivalence Ratio or Fuel Air Ratio $\mathrm{b}^{\underline{F}} \mathbf{I}_{A}$

$$
f=\frac{\text { Actual Fuel-Air ratio }}{\text { stoichiometric Fuel air Ratio }}=\frac{\wedge \frac{F}{A} h_{\text {actual }}}{\wedge{ }^{A_{\text {stoichiometric }}}}
$$

If $f=1, \& \quad$ stoichiometric (Chemically correct) Mixture.
If $f>1, \& \quad$ rich mixture.
If $f<1$, \& lean mixture.
Now, we can see from these three conditions that $f>1$, for both idling and peak power conditions, so rich mixture is necessary.

Sol. 77 Option (C) is correct.
The compression ratio of diesel engine ranges between 14 to 25 where as for S.I, engine between 6 to 12. Diesel Engine gives more power but efficiency of diesel engine is less than compare to the S.I. engine for same compression ratio.

Sol. $78 \quad$ Option (C) is correct.

Fig: T - s curve of simple Rankine cycle
From the observation of the $T-s$ diagram of the rankine cycle, it reveals that heat is transferred to the working fluid during process $2-2$ ' at a relatively low temperature. This lowers the average heat addition temperature and thus the cycle efficiency.
To remove this remedy, we look for the ways to raise the temperature of the liquid leaving the pump (called the feed water) before it enters the boiler. One possibility is to transfer heat to the feed water from the expanding steam in a counter flow heat exchanger built into the turbine, that is, to use regeneration. A practical regeneration process in steam power plant is accomplished by extracting steam from the turbine at various points. This steam is used to heat the feed water and the device where the feed water is heated by regeneration is
called feed water heater. So, regeneration improves cycle efficiency by increasing the average temperature of heat addition in the boiler.

Option (D) is correct.

It may be easily seen that the diagram that static pressure remains constant, while velocity decreases.

Option (C) is correct.
Given : $p=2 \mathrm{~kW}=2 \# 10^{3} \mathrm{~W}, t=20$ minutes $=20 \# 60 \mathrm{sec}$,
$c_{p}=4.2 \mathrm{~kJ} / \mathrm{kgK}$
Heat supplied,

$$
\begin{aligned}
Q & =\text { Power \#Time } \\
& =2 \# 10^{3} \# 20 \# 60=24 \# 10^{5} \text { Joule }
\end{aligned}
$$

And Specific heat at constant pressure,

$$
\begin{aligned}
Q & =m c_{p} D T \\
D T & =\frac{24 \# 10^{5}}{40 \# 4.2 \# 1000}=\frac{24 \# 100}{40 \# 4.2}=14.3 \mathrm{cC}
\end{aligned}
$$

Option (D) is correct.
The $T d s$ equation considering a pure, compressible system undergoing an internally reversible process.
From the first law of thermodynamics

$$
\begin{equation*}
(d Q)_{\mathrm{rev} .}=d U+(d W)_{\mathrm{rev}} \tag{i}
\end{equation*}
$$

By definition of simple compressible system, the work is

$$
(d W)_{r e v}=p d n
$$

And entropy changes in the form of

$$
\begin{aligned}
d s & =\mathrm{b} \frac{\mathrm{~d} Q}{T} \\
(\mathrm{~d} Q)_{r e v} & =T d s
\end{aligned}
$$

From equation (i), we get

$$
T d s=d U+p d n
$$

This equation is equivalent to the $I^{s t}$ law, for a reversible process.

And
$p_{3}=20 \mathrm{bar}=20 \# 10^{5} \mathrm{~N} / \mathrm{m}^{2}, p_{4}=1 \mathrm{bar}=1 \# 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
g=\frac{c_{p}}{c_{v}}=\frac{0.98}{0.7538}=1.3
$$

Apply general Equation for the reversible adiabatic process between point 3 and 4 in T - s diagram,

$$
h_{\text {isentropic }}=\frac{\text { Actual output }}{\text { Ideal output }}=\frac{T_{3}-T_{4} \underline{1}}{T_{3}-T_{4}}
$$

$$
0.94=\frac{1500-T_{4}}{1500-751.37}
$$

$$
0.94 \nRightarrow 748.63=1500-T_{4} \mid
$$

$$
T_{4} \mathbf{I}=1500-703.71=796.3 \mathrm{~K}
$$

Turbine work,

$$
W_{t}=c_{p}\left(T_{3}-T_{4} \mathrm{l}\right)=0.98(1500-796.3)=698.64 \mathrm{~kJ} / \mathrm{kg}
$$

Option (A) is correct.
Given : $f=\frac{F}{A}=\frac{m_{f}}{m_{a}}=0.05, h_{v}=90 \%=0.90, h_{\text {ith }}=30 \%=0.3$
$C V_{\text {fuel }}=45 \mathrm{MJ} / \mathrm{kg}, r_{\text {air }}=1 \mathrm{~kg} / \mathrm{m}^{3}$
We know that, volumetric efficiency is given by,

$$
\begin{align*}
h_{v} & =\frac{\text { Actual Volume }}{\text { Swept Volume }}=\frac{n_{a c}}{n_{s}} \\
n_{a c} & =h_{v} n_{s}=0.90 V_{s} \tag{i}
\end{align*}
$$

Mass of air,

$$
\begin{aligned}
& \begin{array}{l}
m_{a}=r_{a i r} \# n_{a c}=1 \# 0.9 n_{s}=0.9 n_{s} \\
m_{f}
\end{array}=0.05 \# m_{a}=0.045 n_{s} \\
& \begin{aligned}
h_{\text {ith }} & =\frac{I . P .}{m_{f} \# C V}=\frac{p_{i m}}{m_{f}} \frac{L A N}{\# C V} \\
p_{\text {im }} & =\frac{h_{\text {ith }} \# m_{f} \# C V}{L A N} \\
& \quad \text { L.P. }=p_{i m} L A N \\
& \frac{0.30 \# 0.045 \# n_{s} \# 45 \# 10^{6}}{n_{s}}=0.6075 \# 10^{6} \\
& =6.075 \# 10^{5} \mathrm{~Pa}=6.075 \text { bar }
\end{aligned} \quad 1 \text { bar }=10^{5} \mathrm{~Pa}
\end{aligned}
$$

Option (D) is correct.

$$
\begin{aligned}
& \mathrm{b} \frac{\boldsymbol{T}^{T}}{T} \mathbf{l}=\mathrm{b} \frac{p_{3}}{{ }_{p}} \mathbf{l}^{\frac{q-1}{g}} \\
& \underline{1500} \quad 20 \# 10^{5} \text { 1.3-1 }
\end{aligned}
$$

$$
\begin{aligned}
& T_{4}=\frac{1500}{(20)^{\frac{0.3}{1.3}}}=751.37 \mathrm{~K}
\end{aligned}
$$

Given:

$$
\begin{aligned}
& n_{c}=10 \% \text { of } n_{s}=0.1 n_{s} \\
& \frac{n_{s}}{n_{c}}=\frac{1}{0.1}=10
\end{aligned}
$$

And specific heat ratio $c_{p} / c_{v}=g=1.4$
We know compression ratio,

$$
r=\frac{n_{T}}{n_{c}}=\frac{n_{c}+n_{s}}{n_{c}}=1+\frac{n_{s}}{n_{c}}=1+10=11
$$

Efficiency of Otto cycle,

$$
\begin{aligned}
h_{\text {Otto }} & =1-\frac{1}{(r)^{g-1}}=1-\frac{1}{(11)^{1.4-1}} \\
& =1-\frac{1}{(11)^{0.4}}=1-0.3832=0.6168-61.7 \%
\end{aligned}
$$

Option (B) is correct.
Given : $p_{1}=2$ bar $=2 \# 10^{5} \mathrm{~N} / \mathrm{m}^{2}, T_{1}=298 \mathrm{~K}=T_{2}, n_{1}=1 \mathrm{~m}^{3}, n_{2}=2 \mathrm{~m}^{3}$ The process is isothermal,

So,

$$
\begin{aligned}
W & =p_{1} n_{1} \ln \frac{p_{1}}{p}=p_{1} n_{1} \ln a \frac{n_{2}}{n} \mathrm{k}=2 \# 10^{5} \# 1 \ln : \frac{2}{1} \mathrm{D} \\
& =2 \# 0.6931 \# 10^{5}=138.63 \mathrm{~kJ}-138.6 \mathrm{~kJ}
\end{aligned}
$$

If
Option (A) is correct
The Joule-Thomson coefficient is a measure of the change in temperature with pressure during a constant enthalpy process.

$$
m=c \frac{2 T}{2} \frac{m}{m}
$$

$$
m_{J}=\begin{array}{ll}
\mathrm{Z}_{<0} & \text { temperature increases } \\
\lceil=0 & \text { Temperature remains cons tan } \mathrm{t} \\
5>0 & \text { Temperature decreases during a }
\end{array}
$$

Temperature decreases during a throttling process

Option (B) is correct.

The greatest velocity and lowest pressure occurs at the throat and the diverging portion remains a subsonic diffuser. For correctly designed convergent divergent nozzle, the throat velocity is sonic and the nozzle is now chocked.

Option (B) is correct.
Given : $h=0.75, T_{1}=727 \mathrm{cC}=(727+273)=1000 \mathrm{~K}$
The efficiency of Otto cycle is given by,

$$
\begin{aligned}
& h=\frac{W_{\text {net }}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}=1-\frac{T_{2}}{T_{1}} \\
& \frac{T_{2}}{T_{1}}={ }_{1}-h \quad \& T_{2}=(1-h) T_{1} \\
& T_{2}=(1-0.75) 1000=250 \mathrm{~K} \text { or }-23 \mathrm{cC}
\end{aligned}
$$

Option (A) is correct.
Given : $r=8.5, g=1.4$
The efficiency of Otto cycle is,

$$
\begin{aligned}
h & =1-\frac{1}{(r)^{g-1}} \\
& =1-\frac{1}{(8.5)^{1.4-1}}=1-\frac{1}{2.35}=57.5 \%
\end{aligned}
$$

Option (B) is correct.

The average temperature at which heat is transferred to steam can be increased without increasing the boiler pressure by superheating the steam to high temperatures. The effect of superheating on the performance of vapour power cycle is shown on a $T-s$ diagram the total area under the process curve $3-31$ represents the increase in the heat input. Thus both the net work and heat input increase as a result of superheating the steam to a higher temperature. The overall effect is an increase in thermal efficiency, since the average temperature at which heat is added increases.

Option (A) is correct.
The Rateau turbine is a pressure compounded turbine.
Option (B) is correct.
Maximum Inversion

When $m<0$ then temperature increases and become warmer.
Option (A) is correct.
Given : $W_{\text {net }}=50 \mathrm{~kJ}, h=75 \%=0.75$

We know, efficiency of heat engine is,

$$
h=\frac{W_{\text {net }}}{Q_{1}} \& Q_{1}=\frac{W_{\text {net }}}{h}
$$

Where $Q_{1}=$ Heat transferred by the source to the system.

$$
Q_{1}=\frac{50}{0.75}=66.67 \mathrm{~kJ}
$$

From the figure heat rejected Q_{2}
(From the energy balance)

$$
\begin{aligned}
& Q_{1}=Q_{2}+W_{n e t} \\
& Q_{2}=Q_{1}-W_{n e t}=66.67-50=16.67=16^{2} \underline{2}_{\mathrm{kJ}}
\end{aligned}
$$

Option (C) is correct.
Given : $p_{1}=1$ bar , $p_{2}=16$ bar
The intermediate pressure p_{x} (pressure ratio per stage) has an optimum value for minimum work of compression.

And

$$
p_{x}=\sqrt{p_{1} p_{2}}=\sqrt{1 \# 16}=4 \mathrm{bar}
$$

Option (B) is correct.
Let h_{1} and h_{2} are the enthalpies of steam at the inlet and at the outlet.
Given :

$$
\begin{aligned}
h_{1}-h_{2} & =0.8 \mathrm{~kJ} / \mathrm{kg} \\
V_{1} & =0
\end{aligned}
$$

From the energy balance for unit mars of steam, the total energy at inlet must be equal to total energy at outlet.

So,

$$
\begin{aligned}
h_{1}+\frac{V_{1}^{2}}{2} & =h_{2}+\frac{V_{2}^{2}}{2} \\
V_{2}^{2} & =2\left(h_{1}-h_{2}\right)
\end{aligned}
$$

$$
V_{2}=\sqrt{2 \# 0.8 \# 10^{3}}=40 \mathrm{~m} / \mathrm{sec}
$$

Option (B) is correct.
Given :

$$
\begin{align*}
r & =5.5, W=23.625 \# 10^{5} \# n_{c} \\
p_{\text {mep }} & =\frac{W_{n e t}}{n_{s}}=\frac{23.625 \# 10^{5}}{n_{s} / n_{c}} \tag{i}
\end{align*}
$$

We know,
Where n_{s} = swept volume
And

$$
\begin{aligned}
r & =\frac{n}{n_{c}}=\frac{n_{c}+n_{s}}{n_{c}}=1+\frac{n_{s}}{n_{c}} \\
\frac{n_{s}}{n_{c}} & =(r-1)
\end{aligned}
$$

Where

$$
n_{t}=\text { Total volume }
$$

$$
n_{c}=\text { clearance volume }
$$

Substitute this value in equation (i), we get

$$
p_{m e p}=\frac{23.625 \# 10^{5}}{r-1}=\frac{23.625 \# 10^{5}}{5.5-1}=5.25 \# 10^{5}=5.25 \mathrm{bar}
$$

